New Method for Tubing Conveyed Perforating Long Intervals with Improved Reliability

2019-NAPS-5.3
AUTHOR: Obbie Loving - Core Lab
Pressure Pulsed Perforating

New Method for Tubing Conveyed Perforating (TCP)

- Enables perforation of multiple clusters in Horizontal Wells with existing perforations
- Eliminates need for blank spacer guns on long intervals in Vertical or Horizontal Wells
Pressure Pulsed Perforating

Historical Methodology for Horizontal Recompletes

Time Delay Perforating System on Coiled Tubing

Loaded Gun

Blank Guns

Loaded Gun

2019-NAPS-5.3 New Method for Tubing Conveyed Perforating Long Intervals with Improved Reliability
New Pressure Pulsed Perforating Technology
Pressure Pulsed Perforating

System Operation

Donor Gun
Pressure Chamber
Spacer Tubing

Spacer Tubing
Differential Firing Head
Receiver Gun

2019-NAPS-5.3 New Method for Tubing Conveyed Perforating Long Intervals with Improved Reliability
Pressure Pulsed Perforating

New Method for Tubing Conveyed Perforating Long Intervals with Improved Reliability
Pressure Pulsed Perforating

Field Test Results

- Field Tests – North Dakota
 - 100% Success on 4 Wells
 - 21,000 foot Horizontal Wells in Bakken formation
 - 4,400 PSI hydrostatic pressure
 - Toe stage perforated after sliding sleeve failure
- Well #1
 - 3 Successful transfers
- Well #2-4
 - 6 Successful transfers
Pressure Pulsed Perforating

Field Trial Results

- Field Trial – Permian Basin
 - 100% Success
 - Horizontal Well – Bottom shot @ 14,208’
 - 5,400 PSI hydrostatic pressure
 - 11 Successful transfers in a single run
 - Over 200 existing perforations in Well
Pressure Pulsed Perforating

Field Trial Results

- Field Trial - California
 - 100% Success
 - Vertical Well
 - 4 Runs in various hydrostatic pressures
 - 15 Successful transfers
 - Maximum of 9 transfers in one run
 - Various transfer intervals
Pressure Pulsed Perforating

Benefits - Horizontal Wells with existing perforations

- Perforate all clusters in one trip
- All guns are properly positioned when first gun fires
- Improved efficiencies
 - Time (cost) savings for deployment and retrieval
 - Eliminates need to mobilize coiled tubing
 - Eliminates need for time delay fuses
Benefits- Long blank intervals

- Improved operational efficiencies
 - Faster deployment and retrieval of perforating guns
 - Fewer man hours to prepare blank guns
 - Less weight and volume to transport to and from location
 - Fewer man hours to clean up blank guns after the job

- Lower costs
 - Time savings
 - Tubing spacers replace costly blank guns
 - Improved reliability eliminates stop fires
Conclusions

- 100% Success in Field Tests and Field Trials
- Successfully shot multiple clusters in Horizontal Wells with existing perforations
- Eliminates need for blank spacer guns on long intervals in Vertical or Horizontal Wells
QUESTIONS?
THANK YOU