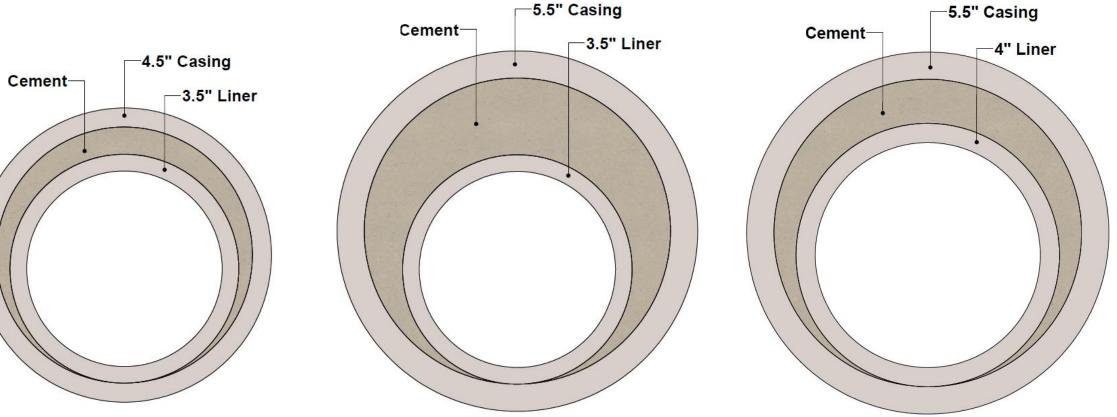
2019 NAPS North America Perforating Symposium

AND SAFETY FORUM

DALLAS - FORT WORTH. AUGUST 5-6, 2019.

2019-NAPS-5.1

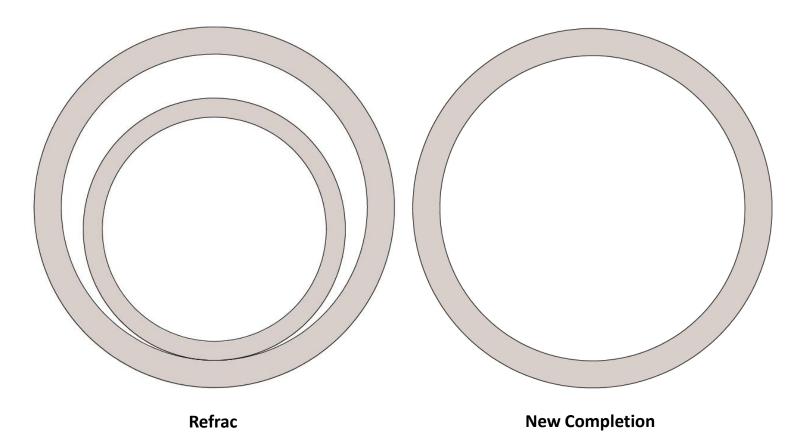
AUTHORS: Justin Coker, Cory Day - Core Lab. Anthony Nguyen - ConocoPhillips. A LOOK AT PERFORATING FOR MECHANICAL ISOLATION REFRACS: A New Challenge for Perforating Technologies


Defining the Method

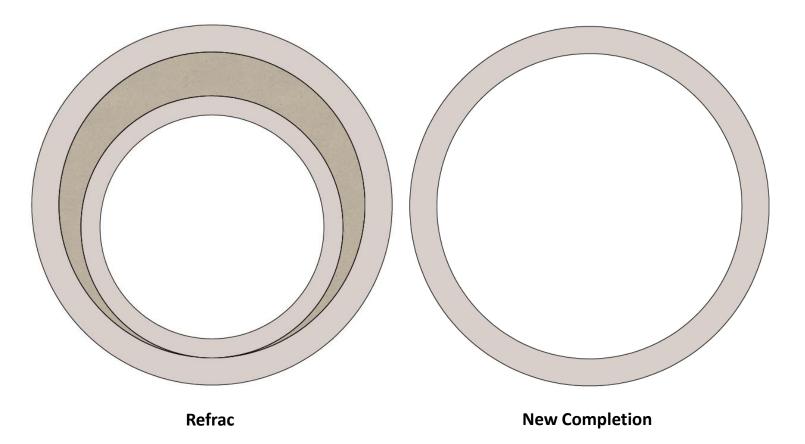
- Revitalize depleted wells with use of hydraulic fracturing
- Liner ran inside existing well casing
- Cement placed between liner and casing to:
 - Isolate previously completed zones
 - Provide mechanical connection between liner and casing
 - Provide confinement for treatment injection
- Well recompleted by perforating and treating through liner, cement, and casing

Defining the Method

- Common wellbore layouts include
 - 3.5" liner inside 4.5" casing
 - 3.5" liner inside 5.5" casing
 - 4" liner inside 5.5" casing



Challenges for Perforating


- Perforate through two strings
- Liner likely fully eccentric

Challenges for Perforating

- Perforate through two strings
- Liner likely fully eccentric
- Cement between strings

Challenges for Perforating

- Perforate through two strings
- Liner likely fully eccentric
- Cement between strings
- Gun likely fully eccentric
- Reduced perforating gun diameter

Performance Examples_2.5" Gun in 3.5" x 4.5"

	Conventional GH	Conventional SDP
Average Hole Size (in.)	0.24	.18
Minimum Hole Size (in.)	0.20	• 0.15
Maximum Hole Size (in.)	0.29	0.21
%STDEV	14.6%	11.2%

Performance Examples_2.5" Gun in 3.5" x 5.5"

	Conventional GH	Conventional SDP
Average Hole Size (in.)	0.21	• 0.17
Minimum Hole Size (in.)	0.18	• 0.14
Maximum Hole Size (in.)	0.27	0.22
%STDEV	13.5%	17.2%

Performance Examples_2.75" Gun in 4" x 5.5"

	Conventional BH	0.42" Conventional CH
Average Hole Size (in.)	0.44	0.30
Minimum Hole Size (in.)	0.24	0.24
Maximum Hole Size (in.)	0.65	0.38
%STDEV	39.3%	17.9%

Introduction of a New Perforating Technology

- New shaped charge technology was needed to:
 - Produce optimal and consistent hole sizes:
 - Through both strings of casing
 - For all phasings of the gun system
 - Regardless of gun position
- This engineered solution provided operators with:
 - Better control of perforation friction
 - Higher cluster efficiency
 - Faster treating times
 - Predictable performance throughout entire well

Field Observations from an Operator's Perspective

QUESTIONS? THANK YOU

2019 NAPS North America Perforating Symposium

AND SAFETY FORUM

DALLAS - FORT WORTH. AUGUST 5-6, 2019.

2019-NAPS-5.1 AUTHORS: Justin Coker, Cory Day - Core Lab. Anthony Nguyen - ConocoPhillips.

