Validation and Application of a Next-Generation Event Event Simulator for Perforated Completions.
Presentation Overview

- Introduction
 - Perforating & Modeling
 - Legacy Dynamic-Event Platform
- Next-Gen Dynamic Event Modeling
- Validation and Benchmarking
- Job Design and Execution: Examples
- Conclusions
- Digital Perforating Workflow
Introduction

- Cased hole well completions are widely used for onshore and offshore wells.

- Casing, cement and formation must be perforated to create the critical link between production tubing and hydrocarbon reserves.

- Modern perforating operations are typically carried out using explosive shaped charges that create high-velocity jets to generate perforation tunnels.

- Perforating job design considerations
 - Perforation tunnel clean-up (Productive perforations)
 - Risk mitigation for gunshock damage (Safe Operations)
Introduction

Perforating Job-Design: Tunnel Cleanup
- Hydrodynamic process that ensues for tens of seconds after the tunnels are generated.
- Customizing the post-detonation hydrodynamics to generate a transient pressure underbalance that flushes debris and crushed-rock damage layers

Perforating Job-Design: Gun Shock Damage
- Perforating events drive very large impulse forces on the downhole components, resulting in permanent damage to production tubing, isolation packers, and electronic monitoring equipment, as well as HSE risk.
- Mitigating the risk of gunshock damage is critical to ensuring a successful and safe perforating operation.

“A physics-based, robust dynamic modeling software is critical to dynamic flow modeling and risk mitigation for Optimized Perforation Design”
Introduction: Legacy Modeling Platform

- Scientific platform capable of simulating short-time (0.5-tens of seconds) dynamic events, widely used over the last 20+ years.

- Applications include:
 - Dynamics of perforating events
 - Propellants
 - Underbalance mechanisms
 - Tunnel Clean-up
 - Shock modeling
 - Risk Mitigation
Next-Gen Dynamic Event Software

Integration of new physics and numerical algorithms
- New wellbore flow model developed and implemented
- Shock-capturing Riemann-based hydrodynamic solvers incorporated
- Improved fluid thermodynamic closure

A new graphical user interface with a modern look and feel
- Updated input forms and software controls
- Simplified user input
- Automated report generation
Benchmarking and Validation: Classical Drop Bar

- Metal bar with transient gauges is dropped into a 1,500-ft vertical wellbore. The wellbore is filled with water between 1,000 to 1,500ft.
- Legacy software does not preserve the physical wave speeds and therefore transmits information at non-physical (i.e., numerically induced) speeds.
- Accurate prediction of impact time by next-gen software
Benchmarking and Validation: Transient Gun Drop

- Operator interested in a scenario where a perforating gun is dropped after detonation (at t = 0) to the bottom of the wellbore full of fluid, impacting a sub-surface valve.

- Dynamics of this example are dominated by fluid interactions with the solid structure of the gun.

- The next-generation simulator predicts a landing approximately 10 seconds after detonation, followed by few minor impact bounces.

- The legacy software experiences a numerical instability that drives a spurious oscillation of the gun bounce that grows indefinitely.
Benchmarking and Validation: Deepwater, HPHT

- Deepwater, HPHT well with a formation pressure as high as 28,000 psi. Tight rock formation, TCP conveyed.

- Computational efficiency: Next-Gen simulator uses a larger time step, more efficient computational time.

- Instantaneous, small-time scale dynamic behavior is misrepresented by the legacy software due to spurious non-physical oscillations.
Benchmarking and Validation: Flow Optimization

- Middle East well completion, competent sandstone with a porosity of 20% and a permeability > 500mD.

- Deviated well with the perforating job run by wireline conveyance and additional blank chambers included in the bottom hole assembly to optimize cleanup.

- The underbalance magnitude from gauge data is ~2,700 psi compared to 2,500 psi (from next-gen software) and 2,200 psi (from legacy software).

- Subsequent recovery phase (critical to cleanup) indicates that the profile from the next-gen software is in excellent agreement with the gauge data.
Tubing-conveyed perforating job in a low-permeability carbonate formation.

Better prediction of peak pressure (~9,500 psi) with next-gen software is observed in comparison to the legacy software.

Reflective pressure signatures from the rathole are precisely captured with the next-generation software.
North Sea Application

Client’s objective was to evaluate a matrix of gun systems and make a selection based on performance, clean-up, risk evaluation etc.

Amount of underbalance, clean-up, skin reduction and any shock loading on completion equipment was investigated.
Job Design and Optimization: Example

- Physical insight provided by the software on dynamic events
- Pre-job planning
- Post-job analysis
Conclusions

• Results clearly demonstrate that the next-generation dynamic event simulator represents a more accurate, numerically stable, and computationally efficient software platform than the legacy code.

• The new advanced computational tool presented here is a critical component in the ongoing development of a digital perforating workflow, which is based on technology-centric solutions for optimizing perforated completions.

• These solutions are centered on the following aspects that are critical to achieving operational efficiencies and delivering expected productivity:
 - Thorough assessment of the formation and the wellbore architecture
 - Understand and mitigate the risk associated with highly energetic, perforating events
 - Efficient communication between wellbore and reservoir
 - Integrate with completion design strategies (including hydraulic fracturing and stimulation)
 - Fully automated, integrated and scalable job design workflows
Digital Perforating Workflow

- Comprehensive data analysis
- Physics-based models
- Analytics tools
- Data management
- Automation

Validation and Application of a Next-Generation Dynamic Event Simulator for Perforated Completions Jim Gilliat BHGE
Acknowledgements / Thank You / Questions

The authors would like to thank Stephen Zuklic, Jason Harper and William Myers for all their support. The authors also acknowledge the support of Baker Hughes (a GE Company) for permission to publish this work.
QUESTIONS?
THANK YOU!

AUTHORS: Dominic Wong, Graham Fraser, Tullow Oil, Noma Osarumwense, Baker Hughes
Rajani Satti, Baker Hughes