Iain Maxted
Chief Technology Officer
Guardian Global Technologies
Advances in Detection of External Casing Cables During Perforating Operations

AUTHOR: Iain Maxted – Guardian Global Technologies; with acknowledgement and thanks to Halliburton Logging and Perforating
PROGRAMME

- Introduction
- System Description
- Technical Development
- Development Testing
- Real-World Results
- Future Direction
Introduction

- Metal Anomaly Tool – Why;
- Technical Issues;
- Project Objectives;
 - High Accuracy Detection;
 - Real-Time Output (Pseudo);
 - Minimise/Eliminate Expert User Interpretation;
 - Detect and Shoot in Single Run.
System Description

- Specification:
 - 3 \(\frac{1}{8}\)”; 15,000psi; 350\(^\circ\)F;
 - Casing Range: 4 \(\frac{1}{2}\)” – 7”;
 - Circumferential Resolution: 5\(^\circ\);
 - Detection Accuracy: +/- 7.5\(^\circ\) in Wells >5\(^\circ\) Deviation;

- System Operation:
 - MAT…..MPP…..PC…..Seeker.
Tool String Configuration

- Powered Swivel Joint/AOT
- Anchor
- Knuckle Joints
- Shock Absorber
- Metal Anomaly Tool
- Gun String
- Cable Head

Advances in Detection of External Cables During Perforating Operations
Technical Development

Eddy Current Sensor

- The Problem!

Static Magnetic Modelling

Advances in Detection of External Cables During Perforating Operations
Technical Development

Sensor Configurations - 1

<table>
<thead>
<tr>
<th>Sensor name</th>
<th>Sensor description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECD-GMR-40-15</td>
<td>Eddy current detection GMR sensor with 40 mm OD coil bobbin (as designed for the test jig), 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-GMR-18-15</td>
<td>Eddy current detection GMR sensor with 18 mm OD coil bobbin, 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-GMR-18-50</td>
<td>Eddy current detection GMR sensor with 18 mm OD coil bobbin, 0.50mm wire diameter</td>
</tr>
<tr>
<td>ECD-GMR-18-15-2</td>
<td>Eddy current detection GMR sensor with 18 mm OD coil bobbin, 0.15mm wire diameter, double wound (two parallel wire strands)</td>
</tr>
<tr>
<td>ECD-GMR-DF40-15</td>
<td>Eddy current detection GMR sensor with 40 mm OD differential coil bobbin, 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-GMR-DF18-15</td>
<td>Eddy current detection GMR sensor with 18 mm OD differential coil bobbin, 0.15mm wire diameter</td>
</tr>
<tr>
<td>FLD-GMR-DC-31</td>
<td>Flux leakage detection (remnant field), double core, single coil with 0.315mm diameter wire, GMR sensor</td>
</tr>
<tr>
<td>FLD-HAL-DC-31</td>
<td>Flux leakage detection (pulsed), double core, single coil with 0.315mm diameter wire, hall sensor</td>
</tr>
</tbody>
</table>
Technical Development

Sensor Configurations - 2

<table>
<thead>
<tr>
<th>Sensor Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECD-DCA-40-15</td>
<td>Eddy current detection differential coil antenna sensor with 40 mm OD coil bobbin (as designed for the test jig), 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-DCA-18-15</td>
<td>Eddy current detection differential coil antenna sensor with 18 mm OD coil bobbin (as designed for the test jig), 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-DCA-18-50</td>
<td>Eddy current detection differential coil antenna sensor with 18 mm OD coil bobbin (as designed for the test jig), 0.50mm wire diameter</td>
</tr>
<tr>
<td>ECD-DCA-DF40-15</td>
<td>Eddy current detection differential coil antenna sensor with 40 mm OD differential driving coil bobbin, 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECD-DCA-DF18-15</td>
<td>Eddy current detection differential coil antenna sensor with 18 mm OD differential driving coil bobbin, 0.15mm wire diameter</td>
</tr>
<tr>
<td>ECDCORED-1</td>
<td>Pot core - soft iron, h=24mm, D=5,22,34,42 mm, coil with 0.33mm wire, 16 layers of 39 turns, 12.7R. Differential coil sensor/driver wound onto ferrite core in the middle.</td>
</tr>
<tr>
<td>ECDCORED-2</td>
<td>Pot core - soft iron, h=24mm, D=11,22,34,42 mm, coil with 0.33mm wire, 16 layers of 39 turns, 12.7R. Differential coil sensor/driver wound onto ferrite core in the middle.</td>
</tr>
</tbody>
</table>
Technical Development

Sensor
Automated Evaluation – Labview

Advances in Detection of External Cables During Perforating Operations
Technical Development

Sensor Evolution
Technical Development

Conflicting Sensor Requirements:
1) High Power
2) High SNR

Pulsed Eddy Current - PEC
Technical Development

Preliminary Results

4 ½", 17lb Casing
Development Testing

Pulsed Eddy Current

Advances in Detection of External Cables During Perforating Operations
Development Testing
Casing and Target Characterisation

- Characterisation Runs in Sample of Specific Casing;
- Target Topology Input;
Development Testing

Casing and Target Characterisation

[Diagram showing Multi-Peaks and Cable Clamp with angular measurements]

Advances in Detection of External Cables During Perforating Operations
Development Testing
Opposite Crush Plates

Advances in Detection of External Cables During Perforating Operations
Development Testing

Opposite Back Channel

Advances in Detection of External Cables During Perforating Operations
Real-World Results

Software

Advances in Detection of External Cables During Perforating Operations
Real-World Results
Seven-Lobe Blast Protector

Result: 90 Deg target at 135 Deg

Advances in Detection of External Cables During Perforating Operations
Real-World Results

Data Accuracy, Repeatability and Consistency
Real-World Results

Data Accuracy, Repeatability and Consistency
Conclusions and Future Work

Conclusions

- ~1000 stations recorded to date;
- Reliable detection proven with various target forms;
- System requires little or no ‘expert’ input on the wellsite;
- Highly effective real-time QC;
- Results are available ‘real-time’;

Future Work

- Increase speed of scans;
- Machine learning to eliminate characterisation requirements;
QUESTIONS?
THANK YOU!