Maximize Efficiency of Coiled Tubing-Conveyed Perforation with Advanced Gun Deployment System and Real-Time Correlation in High-H2S/High-Pressure Wells

Schlumberger
Rostislav Panferov, Timur Gafiyatullin
OUTLINE

• Introduction
• Project challenges
• Appraisal
• Technology implementation
• Developed project approach
• Case study
• Conclusion
INTRODUCTION

- Oilfield located in Kazakhstan, Caspian basin
- Estimated Recoverable reserves 13 Bbls oil
- Worlds biggest oil discovery since 1968
- Project scope:
 - CT conveyed well perforation
 - Gun Deployment system
 - Commissioning – 14+3 wells
 - Handle possible H2S on surface
PROJECT CHALLENGES

• Reservoir Conditions
 - Hostile reservoir conditions: HP and Ultra High H2S 15-20%
 - NO fluid influx, H2S release or Well Flow allowed
 - BHP – above 10000 psi, WHP – 7500 psi

• Environment
 - Ambient Temperature vary –40 °C to +50 °C
 - Ultra shallow water, ice blocked in winter season,
 - 150 km remote from onshore, sensitive eco-system

• Unique Technology Requirements
 - 15K 5.125” H2S rated Surface equipment
 - Customized H2S rated perforation system
 - Emergency redundant downhole disconnection system
APPRAISAL

• Comprehensive risk analysis
 - High H2S concentration
 - Well Integrity, double barrier requirement
 - Chrome completion
 - Well depth and tortuosity
 - Well fluid influx and no-flow policy

• Technology challenges
 - Gun conveyance method analysis
 - Tool string selection and survivability after detonation
 - Precise real time depth control
 - Potential H2S handling at surface
 - Corrosion prevention and mitigation plan
 - Fishing contingencies
 - PCE configuration for perforation

Schlumberger
Rostislav Panferov, Timur Gafiatullin
TECHNOLOGY IMPLEMENTATION

• Electric line enabled CT system
 - Electric line injected in CT
 - GR/CCL real time readings
 - Tension/Compression readings optional
 - Electrical disconnect device
 - Electrical detonator initiation

• Gun deployment system
 - New design H2S rated 5-1/8” 15000 psi deployment stack
 - H2S rated set of aligning connectors, swivels, adaptors for guns

• Perforation Tool string
 - Redundant disconnect system: electrical and mechanical
 - Shock resistant H2S-rated CT logging head
 - H2S-rated Shock absorbers
 - Rounded scallop HP guns, orienting featured
TECHNOLOGY IMPLEMENTATION - CONTINUE

• Advanced gun deployment system
 - Remotely connects / disconnect perforation connectors
 - Hold gun string weight
 - Able to work under pressure
 - 3 components connector: lock sleeve / slick joint / stinger
 - Sealed ballistic transfer
 - Set of aux components: retrieval / deployment ballistic / flow through
DEVELOPED PROJECT APPROACH

- PCE configuration design
 - Tailored for conveyance guns in double and trebles
 - Designed for 3 different rig and 2 rigless interventions
 - Fully compatible for all fishing scenarios
 - All contingency safety precautions included
 - New approach to “in scale” PCE space out design
TECHNICAL APPROACH - CONTINUE

CT software and hardware design
- CT force analysis
- CT logging head equipment selection
- WL cable and logging/perforation equipment selection

Perforation software and hardware design
- Dynamic underbalance effect and shock load
- Gun loading diagram design
- Gun OD, phasing, shot density, charges

Multi-service hardware design
- Working envelope vs shock load
- Shock absorbers and weak points set up
- Perforation fast gauge set up

CT, WL and perforation post-run data analysis
- CT Force analysis correction for upcoming runs
- Perforation fast gauge data analysis and shock simulation
- Tool string condition after POOH
CASE STUDY

• Well generic description
 – Oil producer
 – Carbonate formation
 – Chrome completion
 – Long deviated section
 – BHP above 11000 psi

• Perforation objectives
 – Dead well deployment of gun (17-20) string with CT
 – Convey to perforation interval (squeeze mode)
 – GR/CCL correlation
 – Overbalance perforation with DUB effect
 – POOH with maintained pressure
CASE STUDY - CONTINUE

• Acquisition job data analysis
 – Weight stability
 – Applied pressure during RIH/POOH
 – Speed limitations vs completion jewelry
 – Tool string gained weight after perforation
 – Cumulative metal fatigue and abrasion of CT

• CT post-run force analysis
 – Compared predicted and actual weigh readings
 – Adjustment of friction coefficients
 – Friction reducers / well fluid / CT pressure values
 – Upcoming runs simulations adjustment
CASE STUDY - CONTINUE

- Shock Analysis Correlation
 - Recover recorded pressure data
 - Compare Pressure during DUB
 - Adjust pressure and shock load simulation
 - Adjustment of upcoming runs

- Detonation Indication Verification
 - Pressure monitoring at surface and downhole
 - CT weight indicator readings
 - WL signal after detonator initiation
 - Physical impact and CT movement at surface
CONCLUSION

• Seamless integration of e-line-enabled CT perforation method with the advanced gun deployment system
• Perforation in controlled way with well integrity and influx management under anticipated operational parameters
• Reliability of electrical and mechanical disconnect combination in one tool string
• Service quality through developed design and execution systematic approach
• Proven solution for high H2S / high pressure environment
Thank you!

Questions?

Schlumberger
Rostislav Panferov, Timur Gafiyatullin