Development of ultra-high strength seamless pipes for Perforating Guns

G. Gomez, S. Cravero, M. Bellingardi
INTRODUCTION

- Pipe for Perforating Gun Carriers (PG) need to sustain during field operation high external hydrostatic pressures and high internal shock loads.

- Increase demand of higher strength to sustain higher collapse loading derive in the need of pipes with Specified Minimum Yield Strength (SMYS) of 165ksi and above.

<table>
<thead>
<tr>
<th>Type</th>
<th>Outer Diameter</th>
<th>Nominal Wall</th>
<th>Tensile Strength</th>
<th>Nominal Collapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical P110 Tubing</td>
<td>3.125” – 79.375mm</td>
<td>0.3125” – 7.938mm</td>
<td>1350 kN</td>
<td>19800psi</td>
</tr>
<tr>
<td>Typical 135ksi Gun Carrier</td>
<td>3.125” – 79.375mm</td>
<td>0.3125” – 7.938mm</td>
<td>1660 kN</td>
<td>24300psi</td>
</tr>
<tr>
<td>165ksi Gun Carrier</td>
<td>3.125” – 79.375mm</td>
<td>0.3125” – 7.938mm</td>
<td>2025 kN</td>
<td>29700psi</td>
</tr>
<tr>
<td>175ksi Gun Carrier</td>
<td>3.125” – 79.375mm</td>
<td>0.3125” – 7.938mm</td>
<td>2148 kN</td>
<td>31500psi</td>
</tr>
</tbody>
</table>

Tenaris
Development of ultra-high strength seamless pipes for Perforating Guns
Based on these requirements, steel seamless pipes with good impact toughness and strict dimensional tolerance are required.

The development of such high strength materials with good toughness is a challenge.

Steel chemistry and processing conditions have to be carefully designed and optimized to achieve these strict requirements.
AGENDA

- Design of steel chemistries for 165ksi and 175ksi based on model calculations.
- Validation with industrial data and fine tuning processing conditions.
- Characterization of materials resulting from industrial trials (microstructure, tempering curve, hardness, tensile and fracture toughness properties).
OBJECTIVE

To develop 165ksi and 175ksi grades with adequate fracture toughness resistance.

<table>
<thead>
<tr>
<th></th>
<th>Yield Strength YS (ksi)</th>
<th>Ultimate Tensile Strength UTS (ksi)</th>
<th>Elongation (%)</th>
<th>Impact Toughness Charpy-V Notch CVN (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>165ksi</td>
<td>165-187</td>
<td>> 170</td>
<td>> 12</td>
<td>> 76</td>
</tr>
<tr>
<td>175ksi</td>
<td>175-197</td>
<td>> 180</td>
<td>> 11</td>
<td>> 44</td>
</tr>
</tbody>
</table>

* Test at Room Temperature, Longitudinal Orientation

Metallurgical challenges:

- To meet toughness requirements in this ultra-high strength steels.

- Tempering temperature should be above 450°C to allow for hot straightening operation without introducing residual stresses.
Model developed at Tenaris R&D to describe the martensite hardness reduction during tempering. Yield Strength (YS) and Ultimate Tensile Strength (UTS) are derived from hardness prediction, based on empirical relations adjusted for Tenaris steels.

Inputs:
- Steel chemistry
- As quenched hardness
- Thermal cycle: isothermal treatment or user introduced tempering curve (for example a curve calculated with the furnace thermal model).

Outputs:
- Hardness, YS and UTS.
A time-temperature equivalent parameter P is used to characterize the tempering curve:

$$P(T,t) = \int_0^t \exp\left(-\frac{Q}{R \cdot T}\right) \cdot dt$$

The activation energy Q depends on steel chemistry.

A mathematical function is used to describe softening during tempering:

$$H(P) = H_0 - \left(H_0 - H_{min}\right) \cdot \frac{W^2}{\left(\log(P) - \log(P_{max})\right)^2 + W^2} + \Delta H(V, P)$$
According to the tempering model and experimental tests, CrMo1 steel used for a 155ksi gun carrier can reach 165 ksi min YS, but tempering temperature is very close to the minimum specified.

*calculations aiming at YS = 170 ksi performed with tempering model (10-15 minutes soaking time)
A modified Heat Treatment (HT) process (HT2) was developed to improve strength-toughness ratio on CrMo1 steel, playing with steel grain refinement. CrMo1 steel with HT2 fulfilled 165ksi specification and final tempering temperature was about 500°C.
Several chemistries were analyzed with the tempering model. Some examples are shown below:

<table>
<thead>
<tr>
<th>Steel</th>
<th>CrMo1</th>
<th>CrMo2</th>
<th>CrMo3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (%)</td>
<td>100</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Mn (%)</td>
<td>100</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Si (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cr (%)</td>
<td>100</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>Mo (%)</td>
<td>100</td>
<td>140</td>
<td>100</td>
</tr>
<tr>
<td>Al (%)</td>
<td>100</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Tempering model</td>
<td>440°C</td>
<td>460°C*</td>
<td>525°C*</td>
</tr>
</tbody>
</table>

*calculations for single treatment aiming at YS = 180 ksi (10-20 min soaking).

According to these calculations CrMo2 and CrMo3 were suitable chemistries to produce 175ksi.
CrMo3 presented slightly better combination of strength-toughness than CrMo2. In both HT2 improved mechanical properties through grain refinement. In CrMo3 steel the modification of austenitization temperature was also useful to improve grain size.
Charpy-V Notch Impact values for both 165ksi and 175ksi grades were satisfactorily above minimum requirement.

Nevertheless, especially for small size guns, charpy test in the transversal direction may be difficult or impossible to be performed.

Furthermore, Charpy-V Notch Impact test results may be not be truly representing the material behavior in dynamic conditions.
Tenaris developed a burst test in pipes with a longitudinal stress concentrator as a way to rank the fracture toughness resistance among different steels.
TECHNOLOGICAL TEST FOR PERF GUNS MATERIAL

• Burst test of Perf Gun material with a longitudinal defect.
 - Defect length equal to the scallop diameter (25mm)
 - Defect mechanized by Electron Discharge Method (EDM), it must be thinner than 1mm
 - Temperature: Room temperature (RT).
 - Loading Rate: lower than 30 MPa/s

The material must comply with:
- Minimum pressure requirements
- Minimum defect opening / final crack length
TECHNOLOGICAL TEST FOR PERF GUNS MATERIAL

Significant differences were found between “good” and “bad” materials:

- **Good materials:** short final crack and high crack mouth opening displacement

- **Bad materials:** long final crack and low Crack Mouth Opening Displacement (CMOD)
TECHNOLOGICAL TEST FOR PERF GUNS MATERIAL

- “GOOD” Material: High CMOD / final Crack Length ratio
TECHNOLOGICAL TEST FOR PERF GUNS MATERIAL

- “BAD” Material: High CMOD / final Crack Length ratio
Tenaris
Development of ultra-high strength seamless pipes for Perforating Guns
CONCLUSIONS

- HT Model calculations helped to design steel chemistries and to make first setting for tempering conditions, to achieve 165ksi and 175ksi min YS.

- Mill runs confirmed the targeted tensile-impact properties windows were met, using adequate HT process and matching the required minimum tempering temperatures.

- A technological test to evaluate in a simple way the capability of the material to sustain high impact loading was developed.

- In terms of Crack Opening vs. Crack length, the developed 165/175ksi grades are behaving in the same way as the consolidated 135/45ksi grades.

- 165ksi and 175ksi grades have been successfully qualified with field explosive tests (survivability tests) and are now available in the industry.
Thank you!

Questions?

Tenaris
Development of ultra-high strength seamless pipes for Perforating Guns