Do not Drop Live Guns
Prevent Shock Induced UPOs
Carlos Baumann – Schlumberger
May 4th 2017
Main sources of Perforating Shock Loads:

A. *Initial detonation / Metallic shock*: large vibration/acceleration of guns and attached tools, can damage electronics and break weak/fragile tools. WL perforating Examples.

B. *Transient wellbore pressure waves*: broken weak points, gun jumping / cable damage, corkscrewed tubing, broken packer seals, unset packers, etc. WL perforating examples.

UPO from wellbore pressure waves - Can shock absorbers help?

Final Conclusions
Perforation tunnels are created in << 1 millisecond

Initial Detonation / Metallic Shock: loads generated while guns detonate ~ 1 ms / 20-ft gun

Transient Wellbore Pressure Waves Shock: loads generated 10-100s ms after detonation
Initial Gun Detonation Shock - Metallic Gunshock

- When the guns fire, the initial vibration / acceleration of the guns produce compression / tension stress waves on the attached tools (also shear waves).
- Analog: hitting the end of a steel bar with a hammer in both directions.
- A compression wave becomes a tension wave after reflection, and vice versa.
Metallic / Initial Detonation Shock: 80-ft of 4.5-in guns 39g charges 5-spf

Acceleration below (left plot) and above (right plot) one Shock Absorber

One Shock Absorber: 10x reduction in acceleration amplitude

- A tool’s shock rating of X,000 G mimics the metallic shock of a Y-ft long Z-in OD gun
- **No correlation** between a tool’s G shock rating and the peak axial load on the tool when guns fire
- Peak axial load depends on *all the attached tools and guns.*
Perf Job with 6 x 20-ft 2-7/8" guns - With Tractors - 3+3 drives

Metallic Shock - Axial Load on the Tools – With and Without WPSAs

Tools weight with 3+3 drives (excluding guns): 1000 lbs
Tools length: 50 ft

WPSA: Wireline Perforating Shock Absorber
Transient Axial Load along the Tools without WPSAs
(WPSA: Wireline Perforating Shock Absorber)
Transient Axial Load at the middle of the Tools – with and without WPSAs
(WPSA: Wireline Perforating Shock Absorber)
Job with Tractors - Metallic Shock - Axial Load on the Tools - Conclusions

- With 2 x WPSAs, peak tension ~ 4 klbf.
- Without WPSAs, peak tension ~ 70 klbf!
- To minimize metallic shock risk => 2 x WPSAs
- WPSAs isolate/decouple the guns from the tools, reduce the metallic shock on the tools
- Larger mass and stiffness of the conveyance => Larger loads on the tools
All Conveyance: WL, TCP - Transient Wellbore Pressure Waves: Origin?

After guns fire: gas pressure in gun (P_g), wellbore fluid pressure (P_w), and reservoir pressure (P_r).

In this example: $P_g << P_w \sim P_r$
Example **Dynamic Underbalance**: Gun Pressure (P_g) $<$ Wellbore Pressure (P_w), guns become a pressure sink $P_g < P_w$, lowering the wellbore pressure around the guns, and then pressure waves propagate along the wellbore.
All Conveyance: WL, TCP - Transient Pressure Waves - Axial Force on the Guns

Wellbore Pressure - Time: 0.0000 sec

Axial Force on Gunstring

- Top of Gunstring
- Bottom of Gunstring

Pressure [psi] vs. Measured Depth [ft]

Force [k lbs] (tension > 0) vs. Time [sec]
All Conveyance: WL, TCP – Instant of Max Uphole Force on the Gunstring

Pw at gunstring top << Pw at gunstring bottom
WL Perforating – Transient wellbore pressure waves => UPO

- Perforated net 12-ft, 2x10-ft 4.5-in (5/72)
- 7-in, 32 lb/ft casing
- Initial wellbore pressure at top shot: 8000-psi
- Estimated oil reservoir pore pressure: 7900-psi
- Weak point rating: 2715 +/- 680 lb
Wellbore pressure wave reflection on the bottom => Peak load on the weak point

Wellbore Pressure - Time: 0.000 sec

Weak-point load w/o shock abs.

2.0 klbf
Peak load at the weak point: 2700 lbf > Min weak point rating: 2715 – 680 = 2035 lbf
WL Perforating - Broken Weak Point

Can WPSAs help mitigate the effects of “Transient wellbore pressure waves”?

WP rating 5450-6900 lbf,

2 x 20-ft 7.0-in guns, net 33-ft, 39g charges at 12 spf
Why the Weak Point broke?

Wellbore Pressure - Time: 0.000 sec

- Top of Gunstring
- Bottom of Gunstring

Weak-point load w/o shock abs.

- 5.45 klbf
Why the Weak Point broke?

Peak Tension 6,500 lbf > 5,450 lbf
Could WPSAs have prevented the broken WP?
Why WPSAs may not reduce the peak cable tension enough to prevent an UPO?

- Average downhole force acting on the guns: 50klbf for 50 ms
- Wellbore transient pressure => long acting loads in one direction, not high-frequency and near-zero average force as with Metallic shock.

Wellbore Pressure - Time: 0.300 sec

- Pressure vs. Measured Depth
 - Top of Gunstring: 16700 ft
 - Bottom of Gunstring: 16600 ft

Net Force on the Guns

- Force vs. Time
 - NOTE: this is NOT cable head force!
Use tools rated for perforating.

Place tools with electronics away from guns, use a blank gun / spacer if needed.

Use shock absorbers to reduce the G levels on shock sensitive electronics.

Tractors and other heavy tools can lead to large loads on low strength tools, use WPSAs right above the guns. The WPSAs “decouple” the guns initial detonation vibration from the tools.
Simulation software helps to evaluate the peak load on the WP and tools, prevent UPOs.

Need reservoir pore pressure and properties, consider worse case scenario:

- For pressure waves from perforating guns, under-estimate the reservoir response.
- For guns blown uphole in gas wells, over-estimate the reservoir response.

To lower the amplitude of transient pressure waves: minimize the difference between gun detonation pressure and initial wellbore pressure.

Contrary to common belief, for Pg<Pw shooting close to TD is less dangerous than at ~10+ gun lengths.

Always simulate/verify last minute changes.
Thank You !!!

Carlos Baumann – Schlumberger
May 4th 2017