IPS 24-8.2 Maximizing Production Efficiency through Perforation Strategy Comparison

Presented by: Chad Senters, ProTechnics

AUTHORS: Chad Senters, ProTechnics Tanner Wood, ProTechnics Kevin Olson, ProTechnics

Agenda

- **Project Background** \bullet
- **Diagnostic Overview** \bullet
- **Design of Experiment**
- **Pre/post-frac Imaging** \bullet
- **Oil Tracer Analysis** \bullet
- Results

Expectations

Rotated & Centralized

> Non-Rotated

Project Background

Looking for Answers to the Important Questions:

De-risk... Can we determine the %Uplift of using Strategy A vs. B, without having to experiment in too many wellbores/pads?

Full Cycle Perspective... We expect that any %Uplift from using Strategy A vs. B, will be single digits... Is there a way to measure such small differences for IP90 and IP180?

D&C/Reservoir Interactions... Is there a way to eliminate all the biases when testing Strategy A vs. B?

Project Background

- o Etc.

Attainable following a Worldclass Methodology for Oil Tracer Selection to be Used for Diagnostics.

More Specifically (example of AB Tests):

• Frac fluid chemistry (i.e. Surfactants) • Perforation strategy (i.e. Oriented, #clusters) • Frac Intensity (i.e. pounds of prop/ft) • Use of the same strategy Bench A vs. Bench B.

Chemical Tracers

- Hydrocarbon soluble tracers are injected throughout the proppant-laden portion of the fracturing treatment.
- These hydrocarbon tracers are adsorbed into a solid \bullet 40/70 mesh medium which ensures that the tracers stay within the proppant pack.
- After fracture operations are completed, oil samples ulletfrom the flowback stream are then caught and analyzed with gas chromatography/mass spectrometry to determine which tracers are present and at what concentrations.

SPE 181721

High Resolution Chemical Tracers

3-Tier Approach to the Selection of Tracers for A/B Testing:

Data Science - We posses the biggest by far, dataset in the industry, we intend to use it for the benefit of our partners.

Field - Take the learnings from the computational modelling to the regional assets of our partners.

Duplication in the Lab - Are these results consistent, repeatable, is there an opportunity to fine-tune the enhancement in an extremely controlled setting?

Chart displays both ideal • tracer pairs (A/B) and nonideal tracer pairs (C/D) to be utilized for high resolution AB testing.

Field Calibration Test

IPS 24-8.2 Maximizing Production Efficiency through Perforation Strategy Comparison

1.Objective:

- Identify the optimal tracers for a specific Formation/Region.
- Upgrading of tracers for A/B Testing Methodology.

2. Process:

- At least in one wellbore (more is better).
- All available eOFT are blended. •
- The blend of eOFT is injected in the same stage.
- Flowback samples are analyzed in a typical 10-• to-25 samples in a 3-month period.

3. Results:

- Tracer-to-Tracer comparison. (Well and Database)
- Ranking/ Upgrading takes place. (Statistical Significance is assessed)
- Results are discussed with Company for the selection of tracer for the application.

Design of Experiment

Test Design	Cluster Spacing	Flow Area / 300'	Stages	Footage	OFT Pumped
300' Top Shots	X	X	14	4,200'	3200 g
300' 90/270	X	X	14	4,200'	3200 g
150' Top Shots	0.5X	2X	28	4,200'	3200 g

Figure 1—Simple design summary alternating stage architecture every 300'.

In addition to oil soluble tracers ulletthe operator also deployed a downhole imaging tool as well as a carbon fiber rod.

Design of Experiment

Design of Experiment

Objective: Determine how different stage architecture configurations affect long and short-term production (ppf and gpf held constant, perf friction lower with 90/270)

Diagnostic Tools

- High Frequency Accelerometer Geo Data
- Camera/Ultrasonic Imaging
- Oil Tracer
- Fiber Rod

Test Design	Cluster Spacing	Flow Area / 300'	Stages	Footage	OFT Pumped
300' Top Shots	X	X	14	4,200'	3200 g
300' 90/270	Х	Х	14	4,200'	3200 g
150' Top Shots	0.5X	2X	28	4,200'	3200 g

Pre/Post Frac Imaging

•

٠

٠

	Prefrac			
0.37	-			
0.35				
0.33				
0.31				
0.29				
0.27	8			
	150' Top Sh	300' 90/2		
ount	32	18		
/g	0.281	0.369		
utliers	5	4	T	
dDev	0.003	0.005		
dErr	0.001	0.001		
	0.37 0.35 0.33 0.31 0.29 0.27 0.27 0.27 0.27 0.27 0.27 0.27	0.37 0.35 0.33 0.31 0.29 0.27 150' Top Sh ount 32 /g 0.281 utliers 5 dDev 0.003 dErr 0.001	0.37 0.35 0.33 0.31 0.29 0.27 150' Top Sh 300' 90/2 150' Top Sh 300' 90/2 150' Top Sh 300' 90/2 150' Top Sh 300' 90/2 150' 100 Sh 300' 90/2 150' 100 Sh 300' 90/2 18 /g 0.281 0.369 utliers 5 4 idDev 0.003 0.005 idErr 0.001 0.001	

_son

Pre/Post Frac Imaging

Post-frac Perf Size & Orientation

Key Observations

- Diameter .
 - Solid uniformity regardless of orientation •
 - Smaller shots eroded more
 - Uniform erosion for all designs
- Orientation .
 - Self-orienting guns continue strong performance •
 - Largest standard deviation = +/-8.4 degrees

Key Takeaways

- High cluster efficiency for all designs .
- Larger hole size in 6" casing led to FR savings while . maintaining CE
- Possible to reduce treating pressure by ~1,000 psi and . reduce FR consumption if we can identify a charge that shoots ~0.37" at 0 degrees in 6" csg
 - Dugan Hughes presented on this spinoff a few . months ago...go watch it if you didn't catch it live!

 150' Top She 300' 90/270 300' Top She 	ots
150' Top Shots	300′ 90/27
0.281"	0.369
0.390"	0.453
+0.109"	+0.084
+39%	+23%
93%	108%
	 150' Top She 300' 90/270 300' Top She 300' Top She 150' Top Shots 0.281" 0.390" +0.109" +39% 93%

Oil Tracer Analysis

- Standard design is contributing about 44\$ of production.
- Contribution by design has stayed relatively flat.
- Smaller stage lengths show ulletthe lowest contributions overall and on a per stage basis

Results

- Camera/ultrasonic data showed uniformity across ulletall designs
- No clear trend with perf erosion and cluster ulletperformance
 - 150' top shots did have a handful of more eroded perfs
 - In previous data sets these perfs were some of the worst producers.
- 300' top shots showed the highest production based • on the high resolution oil tracer data.

Normalized % Production by Design / Wellbore Section

Conclusion

- Checkerboarding completion designs along a single wellbore with A/B testing can lessen variability
- Flowback of completion design oil tracers has \bullet stayed consistent over time with 300' top shots leading the pack
- Integrated data sets show: ullet
 - Stage performance more indicative of lateral placement than depletion
 - The handful of more eroded perfs correlate with ulletpoorer performance
- Rod and tracer data agreed on a cluster level ullet
 - Further tracer normalization improves the correlation between tracer and fiber

Metric	300' Top Shots	300' 90/270	150' Top Shots
FracID Depletion	\bigcirc	\bigcirc	\bigcirc
Surface Treating	0		0
Cluster Efficiency			
Tracer Production		0	
Rod Produciton			

What do you think?

PS 2024

Maximizing Production Efficiency through Perforation Strategy Comparison

AUTHORS: Chad Senters, ProTechnics Tanner Wood, ProTechnics Kevin Olson, ProTechnics

