Perforation Performance Modelling Challenges in the **Presence of Faults**

Presented by: Mohamad Nasif, Shell

AUTHOR: Mohamad Nasif, Shell

IPS 24-6.3

Factors Affecting Cased and Perforated Wells' Performance

- Gun misfire
- Perforation efficiency
- Penetration depth
- Perforation tunnels clean-up
- Damage zone Mud Filtrate
- Reservoir Properties

Perforation Inflow Performance Input Data

- Porosity & Permeability
- Reservoir pressure , temperature
- Relative permeability & Drainage area
- Stress data UCS/TWC
- Drilling Invasion
- Perforation tunnel clean up
- Perforation Gun data

Options Layers Log Data Completion		Gravel Pack						
	Measured Depth	True Vertical Depth	Porosity	Permeability	UCS	TWC	Perforated	
	feet	feet	fraction	md	psig	psig		Γ
1								
2								

Lp Correlation Type	Synthetic	 Invasion Calculation Inputs
Calculate Non-Darcy Skir	Yes	✓ Drilling Fluid Weight
Activity	New Well	✓ Total Drilling Time
Well Type	Deviated	✓ Downtime
Inflow Equation	Fetkovich	▼
Log Data Inpu	Porosity & Permeability	QinetiQ Sanding Model Inputs
Perforating Method	Single Run	✓ Sand Particle Diameter
Invasion Method	Calculate invasion	✓ Sand Density
Sanding Mode	None	Perforation Angle
Crushed Zone Mode	Entered	Perforation Wall Roughness
Lower Completion Type	Cased and Perforated	
Pressure Transform	Pressure Squared	Crushed Zone Inputs
Use Downhole Standof	Yes	Permeability Factor
Enter Gun per Laye	No	Thickness
Use SPOT IPR Extensions	Yes	
Input Phase Ratios	No	

	Optio	ons	Layers	Log Data	CO	mpletion
			Perforati	on Efficiency		
		1	op MD	Bottom MD	,	Layer Pressure
			feet	feet		psig
	1					
rated						
-						IPS 2

G	ravel Pack								
i	nches								
f	eet								
f	raction								
								Select Gun	
er ure	Under Balance Pressure	Overburden Pressure Gradient	Water Saturation	Relative Permeability	Invasion Data	Bottom Hole Temperature	Kv/Kh	Downhole Rock Type	

Modelling Potential Well Performance

- A deviated well was drilled intersecting a fault deeper than the zone of interest.
- The fault is seismically visible and expected.
- Analogue log from a neighbouring well is available for reservoir properties.
- The well was designed as a cased and perforated well completed with a packer
- 4.5" TCP gun 5 SPF HMX was selected to perforate in a dynamic underbalanced condition.

Well Performance : Perforation Modelling

The inflow Modelling uses the reservoir properties (porosity and permeability) to calculate the inflow

Perforating Model Results

- The model accounts for the impact of the effective stresses on the depth of penetration and the well productivity.
- The model also calculates the effect of drilling mud invasion.

 Production and productivity are calculated based on their reservoir properties, invasion depth and DOP. • Flow plotted as a pseudo PLT that shows zonal contributions.

Matching With Pressure Transient

Analysis

Parallel Faults boundary model 0.01 0.1 100 Time [hr] Intersecting faults boundary model 16-3 0.01 0.1 10 100 Time [hr]

- Pressure build-up and Pressure Transient analysis was performed to assess the well and reservoir properties
- Parallel and intersecting fault models allowed for good matches at late times
- Both models suggest the presence of a subseismic fault close to the wellbore.
- Permeability: ~ half log permeability

Assumptions and Uncertainties

- Logging tools have limited depth of investigation
- Invisible uncertainties related to subseismic features
- Performance models simplistically assume lateral continuity.

Image Citation: Mazaheri, atie & Memarian, Hossein & Tokhmechi, Behzad & Araabi, Babak. (2015). Developing Fracture Measure as an Index of Fracture Impact on Well-Logs. Energy, Exploration & Exploitation. 33. 555-574. 10.1260/0144-5987.33.4.555.

- The damage zone in the presence of faults is well identified
- The properties of the damage zone differ from the original reservoir matrix properties depending on the movement, stresses and rock composition.
- Presence of sub-seismic faults in vicinity to a major fault can be expected.

Image Citation: A. Torabi, M. U. Johannessen, T. S. S. Ellingsen, "Fault Core Thickness: Insights from Siliciclastic and Carbonate Rocks", Geofluids, vol. 2019, Article ID 2918673, 24 pages, 2019. https://doi.org/10.1155/2019/2918673

Potential Impact of Faults

- Sub-seismic faults act as a "damage zone" and create a baffling effect within the reservoir, fluid flow is more torturous reducing the effective permeability
- A significant impact on the estimated well productivity and production rate $\sim 50\%$.

Your paragraph text

Learnings

- Perforation Modelling is sensitive to subsurface uncertainties (stress, permeability and reservoir pressure)
- Faults can introduce hidden effective permeability impairment and perforation tunnel clean-up.
- Permeability multiplier to be considered when faults are suspected
- Accounting for subsurface uncertainties in perforation modelling assists in estimating perforation tunnel clean up, predicting well potential and preventing unnecessary reperforation – saving cost and exposure.

QUESTIONS?

IPS 2024

Perforation Performance Modelling Challenges in the presence of Faults

AUTHORS: Mohamad Nasif, Shell

