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Why do we care about perforating strategy?

Wh

mpr)t:ving your perforation strategy is an ‘easy win’ for adding value across your asset.
Perforation strategy changes to uniformity can be measured with high fidelity and in a cost-effective way.
mprovements in uniformity translate directly into production.

ncreasing Ul from 0.5 to 0.75 is worth approximately S500k per well (Cipolla et al. 2024).

ncreasing Ul from 0.75 to 0.9 is worth an additional $500k per well (Cipolla et al. 2024).

How

e Fast-running model that includes the key physics that control fluid and proppant transport
from the wellbore.

e Allows to validate the model and iterate to quickly optimize stage design.

e Monte Carlo uncertainty quantification and optimization.

e There is variability between datasets (ie, some have much more erosion than others). As a
result, there is not one single ‘correct design’, and you need to measure and optimize.
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Proppant transport in the wellbore

Problem 1: Proppant settling Problem 2: Particle inertia
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e [low rate decreases along the stage

e T[he ability to suspend particles decreases

e Perforation phasing becomes crucial once
particles accumulate at the bottom

Fluid ingestion zone
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Snider et al. SPE-209141-MS., 2022

Comparison with lab and yard experiments

Lab experiments Yard experiments
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Perforation erosion

Modified erosion model
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The addition of ‘gamma’ term allows to Cramer et al, SPE-194334-MS, 2020
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Wellbore dynamics simulator

Sketch for the model

(\

e [he proppant transport and erosion
models are incorporated into a fast- (a)
running wellbore dynamics simulator.
e [ime-steps through the injection
schedule, calculating distribution of flow 9o
and erosion in every timestep.
e We consider:
o Breakdown of perfs ©
o Perforation pressure drop '
o Near-wellbore pressure drop po
o Stress shadowing(prior stage and —— :
within the stage) MD
o Random variance in phasing, diameter,
breakdown pressure, and erosion
(Monte Carlo)
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Perforation gun related features

057
e The difference between the gun centered Z 04
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Correction for inline perfs

Oriented perforations are often used in the
field.

Proppant that ‘misses’ the first perforation
turns into the next perforation if both are
located inline.

The third perforation gets even more
proppant.

Thus, there is a tendency for a gradually

increasing erosion for the inline perforations.

Perforation 2

Missed proppant

Perforation 3

Perforation 1
Proppant ingestion

outlines

Generic simulation with 10 clusters, 3 shots at 0°

Cumulative proppant flow per shot

Inline effect
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Spatial variability of erosion

e Erosion data averaged over multiple Data for 4 individual stages
stages typically has a gradual trend. |

e But the result for each individual a
stage is often very variable and lacks
a particular trend, but has some sl : g
spatial correlation. |

e [0 capture such variability, we >
introduce spatially correlated |
randomness of erosion rate.
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Case study 1

e [agle Ford.
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Diameter ratio

Proppant mass
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Case study 1: field vs model
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Proppant mass
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Case study 1: optimal phasing
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50al: uniform proppant distribution.
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Erosion still has heel bias.
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Case study 1: optimal limited entry
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Proppant uniformity index is low if 5 0.400
the perforation friction is low. S
Interestingly, if there is too much 0.100

0.000

limited entry, this harms uniformity
too. Erosion becomes very strong,

and it strongly contributes to Why

nonuniformly.
There is an optimal limited entry level
that maximizes uniformity.
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e |mprovements in uniformity translate directly into production.

e Increasing Ul from 0.5 to 0.75 is worth approximately S500k per well.

e Increasing Ul from 0.75 to 0.9 is worth an additional $500k per well
(Cipolla et al. 2024).
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Case study 2

Montney. Field vs model

Shots oriented in the upper 120° of the
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Summary

e Primary physical mechanisms affecting proppant distribution in a
perforated wellbore: particle settling, particle turning, perforation erosion.

e Afast running model is developed and is calibrated against available
laboratory scale, yard scale, and computational data.

e [wo history matched field cases are presented.

e (ptimization of phasing and limited entry increase uniformity index.

e We gratefully acknowledge the contributions of two operators who
provided the data for the case studies for this paper.
o (Case Study 1was provided by an anonymous operator.
o (ase Study 2 was provided by Arc Resources. We appreciate the
collaboration with colleagues with Arc Resources, including Justin

Kitchen, Mani Mehrok, Pierce Anderson, and Farhan Alimahomed. L i
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