

HALLIBURTON

Wireline & Perforating

IPS 24-4.2

On the measurement of permeability anisotropy and associated error: application to API **RP 19B Section 4 tests**

Presented by: Jacob McGregor, Halliburton

AUTHORS: Jacob McGregor, Halliburton

Background: error in Sec 4 crushed zone permeability due to rock anisotropy

- Rock is anisotropic with respect to permeability <u>How does this</u> influence the accuracy of a k_{virgin} permeability measurement?
- API RP 19B Section 4 Perforate-and-Flow Test:

to API RP 19B Section 4 tests

Background: theoretical rate index, RI_{th}

API RP 19B, Section 4:

$$RI_{th} = \frac{2\pi}{\mu} \left[\frac{k_d D}{\ln(R/r_c)} + \sqrt[3]{k_{ax} k_d^2} \left(\frac{r_c R}{R - r_c} \right) \right] \qquad \rho \left(\frac{\partial v_i}{\partial t} + v_j \right)$$

 k_{ax} = "axial permeability"; k_d = "diametral permeability"

© Society of Petroleum Engineers (SPE). Figure 5 of Halleck, P.M.; Dogulu, Y.S. (1997); reprinted by permission of SPE whose permission is required for further use.

 $\left(\frac{\partial v_i}{\partial x_i}\right) = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 v_i}{\partial x_j \partial x_j} + \rho g_i + S_i$ $S_{i} = -(r_{ij}\mu v_{j} + \rho\beta_{ij}|v|v_{j}); r_{ij} = k_{ij}^{-1}$

Background: permeability and viscous resistivity

Darcy's law (viscous resistivity) $-\partial \Phi / \partial x_i = \mu r_{ij} q_j$

Background: magnitude of symmetric 2ndrank tensor

$$S_{ij} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}; S_{ij} = S_{ji}$$
$$S = S_{ij}u_iu_j \quad (1)$$
$$a_i = S_{ij}b_j \quad (2)$$
$$S = \frac{|a_i|\cos(\theta)}{|b_i|} \quad (3)$$

Background: experimental measurement

- Thin-disc, $D/L \gg 1$
 - Vector $-\partial \Phi / \partial x_i$ forced along x_1

$$q_i = -\mu^{-1}k_{i1}\partial\Phi/\partial x_1$$

From Eq(3), measure q_1 to determine k_{11}

- Long rod, $D/L \ll 1$ Vector q_i forced along x_1

From Eq(3), measure ullet $-\partial \Phi / \partial x_1$ to determine r_{11}

 $-\partial \Phi / \partial x_i = \mu r_{i1} q_1$

Background: experimental measurement

Background: experimental measurement

 $r_{ij}(x, y, z) = \begin{bmatrix} 1.07 & -0.20 & -0.12 \\ -0.20 & 0.06 & 0.01 \\ -0.12 & 0.01 & 0.05 \end{bmatrix} \text{md}^{-1}$

$$r_{ij}'(x',y',z') = \begin{bmatrix} 1.12 & 0 & 0 \\ 0 & 0.05 & 0 \\ 0 & 0 & 0.014 \end{bmatrix} \text{md}^{-1}$$

$$k'_{ii}(x', y)$$

Questions

What dimensions does the sample need to have to yield k with a certain desired accuracy or, more generally, what is the relation between the geometry of a cylindrical sample, expressed by the D/L ratio, and the apparent directional permeability k_a for a given anisotropy k_{ij} and measurement orientation u_i ? The same can be asked for γ .

Note, for finite-dimensioned samples, apparent directional k or r in the u_i direction measured using a conventional axial permeameter :

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

Numerical model

$$k_{ij}'(x',y',z') = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} md$$

True
$$k_{xx}$$

 $k_{ij}(x, y, z) = \begin{bmatrix} 10.5 & 9.5 & 0 \\ 9.5 & 10.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ md

Pressure Contours and Flow Velocity Vector Field

IPS 24-4.2 On the measurement of permeability anisotropy and associated error: application to API RP 19B Section 4 tests

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

•
$$y = d + \frac{(a-d)}{(1+(x/c)^b)^g}$$
 (24)

5PL Curve Fit

Parameter	<i>k</i> _a	r_a
a	2.16	0.49
b	2.52	1.60
С	1.18	1.46
d	10.28	0.10
g	0.54	2.30
SSE	0.033	7.98e-5

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

•
$$y = d + \frac{(a-d)}{(1+(x/c)^b)^g}$$
 (24)

5PL Curve Fit				
Parameter	k _a	r_a		
a	2.16	0.49		
b	2.52	1.60		
С	1.18	1.46		
d	10.28	0.10		
g	0.54	2.30		

to API RP 19B Section 4 tests

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

•
$$y = d + \frac{(a-d)}{(1+(x/c)^b)^g}$$
 (24)

5PL Curve Fit				
Parameter	ka	r_a		
a	2.16	0.49		
b	2.52	1.60		
С	1.18	1.46		
d	10.28	0.10		
g	0.54	2.30		

to API RP 19B Section 4 tests

•
$$k_a = \frac{Q\mu L}{A\Delta \Phi}$$

•
$$r_a = \frac{A\Delta\Phi}{Q\mu L}$$

•
$$y = d + \frac{(a-d)}{(1+(x/c)^b)^g}$$
 (24)

5PL Curve Fit				
Parameter	k _a	r_a		
a	2.16	0.49		
b	2.52	1.60		
С	1.18	1.46		
d	10.28	0.10		
g	0.54	2.30		

$$k_{ij}(x, y, z) = \begin{bmatrix} 10.5 & 9.5 & 0 \\ 9.5 & 10.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ md}$$
IPS 24-4.2 On

Additional results &

answers part 1

Q: What is the relation between the geometry of a cylindrical sample, expressed by the D/L ratio, and the apparent directional permeability k_a or apparent directional viscous resistivity r_a for a given anisotropy k_{ii} and measurement orientation u_i ?

A: To an approximation, • $k_a = \sqrt{\frac{k_{ij}u_iu_j}{r_{kl}u_ku_l}} \left[\frac{1 + \sqrt{k_{ij}u_iu_jr_{kl}u_ku_l}(D/L)^n}{\sqrt{k_{ij}u_iu_jr_{kl}u_ku_l} + (D/L)^n} \right],$ $n = \begin{cases} 1, & D/L < 1\\ 2, & D/L > 1 \end{cases}$ (25)

•
$$r_a = \sqrt{\frac{r_{kl}u_ku_l}{k_{ij}u_iu_j}} \left[\frac{\sqrt{k_{ij}u_iu_jr_{kl}u_ku_l} + (D/L)^n}{1 + \sqrt{k_{ij}u_iu_jr_{kl}u_ku_l}(D/L)^n} \right],$$

 $n = \begin{cases} 2, & D/L < 1\\ 1, & D/L \ge 1 \end{cases}$ (26)

0 10⁰ 10 ka 10-3 10⁰ 10⁻¹ $\frac{k_a}{k_1}$ -10 10-3 10⁰ k_a 10 $\overline{k_1}$ 10-2 10-3 0

IPS 24-4.2 On the measurement of permeability anisotropy and associated error: application to API RP 19B Section 4 tests

Answers part 2

Q: What dimensions does the sample need to have to yield k or r with a certain desired accuracy?

A: The required dimensions (D/L) is a function of k_{ij} and $u_i(\alpha)$ which can be solved for.

Example 2D anisotropy, required D/L vs desired accuracy plots for directional k as $f(k_1/k_2, \alpha)$.

Analysis of core dimensions for measurement

accuracy

An Example Method

Determine

Summary

- Accuracy of k_c is dependent on accuracy of k_{virgin} values measured and used in RI_{th} calculation
- For finite-dimensioned samples, k_a and $r_a = f(D/L, k_{ij}, r_{ij}, u_i)$
 - Approximate analytical expressions for k_a and r_a exist and can be used to approximate measurement accuracy
- Thin disc experiment, $D/L \gg 1$ to measure k_a
- Long rod experiment, $D/L \ll 1$ to measure r_a
 - Six or more independent directional measurements are needed to determine the full tensor

>When one tensor is determined, its reciprocal (matrix inverse) is also known

• A real-world example of experimental data substantiating the 3D tensor theory of viscous resistivity (and permeability) for a geologic porous medium has been presented

For nomenclature and additional info

McGregor, J. (2023). The effect of sample anisotropy properties, dimensions, and imposed no-flow boundaries on the measurement of directional permeability and viscous resistivity. *Symposium of the Society of Core Analysts*. Abu Dhabi, UAE: Society of Core Analysts.

QUESTIONS?

PS 2024

On the measurement of permeability anisotropy and associated error: application to API RP 19B Section 4 tests

AUTHORS: Jacob McGregor, Halliburton

