Case Study: Oilfield Completion Technology and Reservoir Analysis Optimizes Injectivity for Geothermal Water Production In the Netherlands

Author and Presenter: Kerry Daly, Expro

2024 IPS-4.1

Contents

- **1.** Introduction
- **2.** Geothermal Project Parameters
- 3. Challenges and Solutions
- 4. Reservoir Analysis
- 5. Recommendations
- 6. Conclusion
- 7. Acknowledgements
- 8. References

REF: View from Rig Floor of Geothermal Heating District Infrastructure

Introduction

- **1.** Awarded ten-well TCP project for geothermal heating initiative.
- 2. Comprised five pairs of wells, i.e., doublets [Fig 1]
 - Top zone: Delft- ~50 m thick, clean sandstones, \bullet
 - Gap: ~150m between them. \bullet
 - Bottom zone: Alblasserdam ~150m thick, less clean \bullet sandstone.
- 3. The project faced several challenges: To be discussed.
- 4. Post-job Modeling: Evaluated results for future improvements

Fig 1- https://allesoveraardwarmte.nl

Project Parameters

- **1.** The Greenport Westland-Oostkand area has geothermal production since 2007 (Van Leeuwen, 2019)[Fig 2]
- 2. The master plan includes 153 doublets covering 170 km2.
- 3. Objective is to provide heat to district for 30 years.
- 4. The spacing between production / injection wells is carefully planned, considers variations in reservoir thickness and temperature
- 5. Only 8 m spacing at surface, 1.5km at 9,000 ft depth

Map View of Netherland's **Greenport Westland-Oostkand area**

Fig 2- (Van Leeuwen, 2019)

Project Parameters

- 4. The formation depths offer adequate temperatures, with a geothermal gradient of T=0.028*d+11 [Table 1]
 - At 9,000 ft / 3,000m depth- 95°C/ 200°F
- 5. Among the formations, Delft exhibits the highest potential for transmissivity (T)[Table 2]
 - At 90%, the value of 6 for Delft ss is good.
- 6. Well configuration ensures that Thermal Breakthrough (TB) occurs only after several years, optimizing heat extraction.
 - TB- end of geothermal system's life, where extracted • water's temperature from production falls below an acceptable threshold, target 30 years [Table 3]

arting Points	KNNSB	SLDND
ow rate (m³/h)	150	150
uivalent full load hours (h)	5,000	5,000
tial temperature (° C)	45-70	70-75
ection temperature (° C)	40	40
rosity (-)	0.19	0.23
ickness (m)	25-90	25-90
lumertic heat capacity [MJ/(m ³ *K)]	2.5	2.6
sired lifetime of doublet	30	30
ermal retardation factor [-]	3.3	2.8

Table 1: Delft Sandstone Properties (Van Leeuwen, 2019)

/lember	p10	p50	p90
erkel Sandstone	709	22	1
elft Sandstone	211	37	6

Table 2: % Probabilities of transmissibility (Van Leeuwen, 2019)

TCP Parameters

- 1. Previous wells completed encountered sand production/integrity challenges.
- 2. The plan was to use one continuous string of Tubing Conveyed Perforating (TCP) guns with the Static/Dynamic Underbalance (DUB) technique.
- 3. Running a long gun string (potentially 350m) on coiled tubing (CT) created risks associated with gun misfires and weight/shock load [Fig 3,4]
 - Solution was to break into two runs, but this negated DUB on 2nd run, so it required innovative charge selection.
- 4. Highest priority assigned to mitigate risks and ensure safe/efficient execution of the project.

Fig 3- 3rd party Coiled Tubing Rig and BHA

Fig 4- Proprietary Auto-Vent Firing Assembly

1. Protection of Glass Reinforced Epoxy (GRE)-lined casing during intervention

- Highly corrosive environment- 1.08 Specific Gravity Salt Water with a salinity of approximately 10.8% (9.01) lb/gal).
- Production water rate ~75,000 barrels per day,
- Large 9 5/8" OD casing, designed for a completion life of 30 years.
- The GRE lining is crucial for maintaining the wellbore's integrity over an extended period.

Solution:

Implemented specially designed roller connectors to protect the GRE-lined casing [Fig 5,6]

Fig 5- Roller Sub Design

Fig 6- Drag Test Results

- 2. Provide DUB at time of firing for optimal perforation tunnel cleaning across entire perforating interval [Fig 7]
 - Used TCP since it simultaneously creates and cleans long sections of perforating interval.
 - Used explosive jet charges to create holes in the gun body, wellbore casing, and formation, thus forming perforation tunnels.
 - DUB created uniform cleaning, since higher pressure ulletformation fluid surge-cleans the perforations into lower pressure evacuated guns, 0 psi.

Solution:

Due to this, enhances overall operational efficiency.

Fig 7- Dynamic Underbalance, Fadzil et al (2021)

- 2. Required successful deployment of long bottom hole assembly (BHA)
 - Long intervals of large OD perforating guns with high- \bullet shot density were required on small-diameter Coiled Tubing.
 - The perforating guns: 114 mm (4.5 in) OD with density ulletof 39 shots per meter (12 shots per foot).
 - The Coiled Tubing: 50.8 mm (2.00 in) OD, with AMT ulletthreads of 38.1 mm (1.50 in) OD, and low tensile strength of 42,000 lbs.

Solution:

- Expro performed modeling to ensure successful deployment, firing, and retrieval of the long BHA on Coiled Tubing [Fig 8, Table 3].
- Also, split perforation intervals into two separate runs. \bullet

Fig 8-: Shock Model showing no failure points

Alblasserdam Sand: Wellbore fluid level at 735m, Hydrostatic static Pressure = 226.7 bar (3,288 psi), static underbalance (UB) = 49.2 bar (714 psi)

Blank Guns: 3,054m - 3,057m = 3m (MD) Alblasserdam Sand Perforation Interval: 3,057m - 3,224m = 167m (MD)

Static UB (psi)	DUB Created (psi)	Final Skin Factor	Max Tool Movement (ft)	Max. Pressure (psi)	Min. Press., (psi)
714	406	-0.3	-8.12	4.822	3.288

Table 3- Shock model showing Tool Movement

3. Required successful deployment of long bottom hole assembly (BHA)

• By splitting interval, no DUB available on 2nd run

Solution:

- Standard DP or GH charges used on 1st run when DUB cleaning was available [Fig 9]
- Reactive liner charges used on 2nd guns- these provide cleaning/ opening of the perforation tunnel similar to DUB [Fig 10]

Fig 9-

Run 1- Injector Well: Standard Deep Penetrating (DP) charges Run 1- Production Well: Standard Good Hole (GH) charges (Third party Perforating gun system) Fig 10-Run 2- Both Injector and Producer: Reactive liner charges (Third party Perforating gun system)

Slide 10

2024 IPS-4.1 Case Study: Oilfield Completion Technology (TCP) and Reservoir Analysis Optimizes Injectivity for Geothermal Water Production In the Netherlands

as available **[Fig 9]** opening of the perforation tunnel

1. Injector Well Flow Performance Results

Run 1: Upper Delft Formation - shot 50 psi static underbalanced, so formation surge-cleaning probable (Formation P > Wellbore P) with DP charges **[Table 4]**

Note1: 3 loaded intervals within the larger zone, all with varying rock parameters

Note: Perforation analysis was performed with Commercial Modeling Software. This includes a calculation too used to estimate the penetration length and entrance hole diameter. The Darcy IPR model and the System IPR/VLP model were employed to generate the perforation flow potential. In this model, MacLeod was used to calculate the mechanical/geometric skin, while the Cinco and Martin-Bronz Skin models were employed to calculate the partial penetration skin.

Slide 11

3XXX.X-3XXX.X

2024 IPS-4.1 Case Study: Oilfield Completion Technology (TCP) and Reservoir Analysis Optimizes Injectivity for Geothermal Water Production In the Netherlands

Run 2: Lower Alblasserdam Formation- shot balanced conditions, so no formation surge-cleaning possible (Formation P= Wellbore P), so shot with Reactive Liner charges **[Table 5]**

Injection Pressure	Gun System	Gun Casing Data	Shot Phasing	Shot Density	Casing Entrance Hole Diameter	Total Penetration Depth	Perforation Flow Performance
BARa	-	(Inches)	(degrees)	Shots/ft	(inches)	(inches)	(m3/hour)
20		4-1/2	45	12	0.31	9.28	86
20		4-1/2	45	12	0.31	9.25	89
20	Reactive Liner Chg	4-1/2	45	12	0.31	9.16	198
20		4-1/2	45	12	0.31	9.10	70
20		4-1/2	45	12	0.31	9.06	80
20		4-1/2	45	12	0.31	9.00	80
20	-	4-1/2	45	12	0.31	8.89	263
	Injection Pressure BARa 20 20 20 20 20	Injection PressureGun SystemBARa-20-20Reactive20Liner20Chg20202020	Injection PressureGun SystemGun Casing DataBARa-(Inches)20-4-1/220Reactive Liner Chg4-1/220Chg4-1/2204-1/24-1/2204-1/24-1/2204-1/24-1/2204-1/24-1/2204-1/24-1/2204-1/24-1/2	Injection PressureGun SystemGun Casing DataShot PhasingBARa-(Inches)(degrees)20-4-1/24520A-1/24520Reactive Liner Chg4-1/24520Chg4-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/24520A-1/245	Injection Pressure Gun System	Injection Pressure Gun System Gun Casing Data Shot Phasing Shot Density Casing Entrance Hole Diameter BARa - (Inches) (degrees) Shot,fit (inches) 20 - (Inches) (degrees) Shot,fit (inches) 20 - 4-1/2 45 12 0.31 20 Presentive Liner Chg 4-1/2 45 12 0.31 20 - - 4-1/2 45 12 0.31 20 - - - 4-1/2 45 12 0.31 20 - - - - - 4-1/2 45 12 0.31 20 - - 4-1/2 45 12 0.31 20 - - 4-1/2 45 12 0.31 20 - - - 4-1/2 45 12 0.31 20 - - - 4-1/2 <td< td=""><td>Injection Pressure Gun System Gun Casing Data Shot Phasing Shot Density Casing Entrance Hole Diameter Total Penetration Depth BARa (Inches) (Inches) (Inches) Shots/tt (Inches) (Inches) 20 $4-1/2$ 45 12 0.31 9.28 20 $4-1/2$ 45 12 0.31 9.25 20 Reactive Liner Chg $4-1/2$ 45 12 0.31 9.16 20 Reactive Liner Chg $4-1/2$ 45 12 0.31 9.16 20 $4-1/2$ 45 12 0.31 9.10 20 $4-1/2$ 45 12 0.31 9.10 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 8.89</td></td<>	Injection Pressure Gun System Gun Casing Data Shot Phasing Shot Density Casing Entrance Hole Diameter Total Penetration Depth BARa (Inches) (Inches) (Inches) Shots/tt (Inches) (Inches) 20 $4-1/2$ 45 12 0.31 9.28 20 $4-1/2$ 45 12 0.31 9.25 20 Reactive Liner Chg $4-1/2$ 45 12 0.31 9.16 20 Reactive Liner Chg $4-1/2$ 45 12 0.31 9.16 20 $4-1/2$ 45 12 0.31 9.10 20 $4-1/2$ 45 12 0.31 9.10 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 9.00 20 $4-1/2$ 45 12 0.31 8.89

Table 5- Modeling Analysis for Injector Run 2

Best= 263 m3/hr

Note 2: 7 loaded intervals within the larger zone, all with varying rock parameters

1. Injector Well Flow Performance Results

Post-Job Analysis: [Fig 11]

Compare modeling data to Client flow test results:

- Injector- ran PLT, but spinner stopped, so, unfortunately, no lacksquaregood data.
- However, promising results from injection test •
 - Top perforations took 70% vs. 30% for the bottom \bullet

5.40

5.20

Ra)

Pressure

ПРЯ

Run 1 with DUB:

Best= 258 m3/hr

2024 IPS-4.1 Case Study: Oilfield Completion Technology (TCP) and Reservoir Analysis **Optimizes Injectivity for Geothermal Water Production In the Netherlands**

1. Producer Well Flow Performance Results

Run 1: Lower Alblasserdam Formation- shot 30 psi static underbalanced with GH charges [Table 6]

RUN 1	Depth/Layer	Permeability	Pressure	Gun System		Gun Casing Data	Shot Phasing	Shot Density	Casing Entrance Hole Diameter	Total Penetration Depth	Perforation Flo Performance	owi e
	(m) MD	(mD)	BARa			(Inches)	(degree s)	Shots/ft	(inches)	(inches)	(m3/hour)	
Case 1a:	2XXX.X - 3XXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.40	216	
Case 1b:	3XXX.X- 3XXX.X	700	20		DX	4-1/2	45	12	0.51	4.39	71	Ì
Case 1c:	3XXX.X- 3XXX.X	700	20	GH Chg	RDX	4-1/2	45	12	0.51	4.37	109	
Case 1d:	BXXX.X - BXXX.X	700	20		RDX	4-1/2	45	12	0.51	4.35	73	
Case 1e:	3XXX.X- 3XXX.X	700	20		RDX	4-1/2	45	12	0.51	4.34	77	
Case 1f:	3XXX.X - 3XXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.32	101	
Case 1g:	BXXX.X- BXXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.31	64	
Case 1h:	зххх.х - зххх.х	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.29	124	
Case 1i:	3XXX.X- 3XXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.27	116	
Case 1j:	3XXX.X- 3XXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.25	144	
Case 1k:	SXXX.X- SXXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.22	108	
Case 11:	3XXX.X- 3XXX.X	700	20	DYNA 4.5" 23g GH	RDX	4-1/2	45	12	0.51	4.19	91	

RUN 2	Depth/Layer	Permeability	Pressure	Gun System	Gun Casing Data	Shot Phasing	Shot Density	Casing Entrance Hole Diameter	Total Penetration Depth	Perforation Flow Performance	
	(m) MD	(mD)	BARa		(Inches)	(degree s)	Shots/ft	(inches)	(inches)	(m3/hour)	
Case 2a:	2XXX.X - 2XXX.X	700	20		4-1/2	45	12	0.51	4.77	38	
Case 2b:	2XXX.X - 2XXX.X	700	20	Reactive Liner	4-1/2	45	12	0.51	4.74	99	
Case 2c:	2XXX.X- 2XXX.X	700	20	Chg	Chg	4-1/2	45	12	0.51	4.70	184
Case 2d:	2XXX.X- 2XXX.X	700	20		4-1/2	45	12	0.51	4.69	44	
Case 2e:	2XXX.X- 2XXX.X	700	20		4-1/2	45	12	0.51	4.68	48	
Case 2f:	2XXX.X - 2XXX.X	700	20		4-1/2	45	12	0.51	4.66	83	

Note 2: 6 loaded intervals within the larger zone, all with varying rock parameters

Table 6- Modeling Analysis for Producer Run 1

Note 1: 12 loaded intervals within the larger zone, all with varying rock parameters

Slide 13

Best= 216 m3/hr

2024 IPS-4.1 Case Study: Oilfield Completion Technology (TCP) and Reservoir Analysis **Optimizes Injectivity for Geothermal Water Production In the Netherlands**

Run 2: Upper Delft Formation- shot balanced conditions with GH charges, so no automatic formation surge-cleaning possible (Formation P= Wellbore P), so shot with Reactive Liner charges [Table 7]

Table 7- Modeling Analysis for Producer Run 2

Best= 184 m3/hr

Run 1 with DUB: Best= 216 m3/hr

2. Producer Well Flow Performance Results

Post-Job Analysis: [Fig 12]

Compare modeling data to Client flow test results

- Producer using GH charges- ran PLT, but ${\bullet}$ spinner stopped, so no data
- Client Calculated Final Skin= 0.75 •
- Compare that to the original model, which ${\bullet}$ calculated Final Skin= -0.3, so close match.

IPR/VLP injection flow potential in m3/hr calculated from the IPR of the layers of interest.

Slide 14

(BARa)

ſ

2024 IPS-4.1 Case Study: Oilfield Completion Technology (TCP) and Reservoir Analysis **Optimizes Injectivity for Geothermal Water Production In the Netherlands**

Recommendation

- Given acceptable results in Producer well lacksquarewhen using Good Hole (GH) charges,
 - Next Injection well will use GH charges to lacksquarecompare against first well, which used DP and DP reactive charges.
- This downhole result comparison will lacksquareallow optimization of further completion designs.

REF: Company personnel inspecting firing head assemblies during in-country training

Conclusion

- To date, two wells (4 runs total) completed, with several lacksquarechallenges addressed (discussed here).
- **Provided value to geothermal projet through proven** lacksquaretechnology and oil and gas industry expertise.
- **Provided enhanced productivity, bolstering energy** \bullet security and supporting energy transition initiatives.
- **Provided solutions encompassing technical expertise**, \bullet supply chain coordination, and operational excellence.
- Further analysis is ongoing to evaluate the effectiveness lacksquareof gun systems and to optimize bottom-hole assembly (BHA) for future use.

REF: Personnel inspecting GRE casing during the Rig Visit

Acknowledgment

- **Expressing our sincere gratitude to the International Perforating Symposium (IPS) for selecting us.**
- **Recognizing the invaluable contributions of our** suppliers and personnel who contributed to the success of this project.
- Thanks to our company management for allowing us to be here today.

Ref: Personnel inspecting GRE casing during the Rig Visit

References

- Van Leeuwen, W., Buik, N., Gutierrez-Neri, M. Lokhorst, A., Willemsen, G., (2019, April 25-29), \bullet **Proceedings World Geothermal Congress 2010, Bali, Indonesia: Subsurface Spatial Planning for** Geothermal Heat Production in Greenport Westland-Oostland, the Netherlands, IF Technology, Postbus 605, 6800 AP Arnhem, the Netherlands.
- https://allesoveraardwarmte.nl/ lacksquare
- Stichting Platform Geothermie (2018, May). Master Plan Geothermal Energy in the Netherlands: A ulletbroad foundation for sustainable heat supply: www.geothermie.nl
- Nurul Fadzil et al., "Maximizing Injection Performance Through Fit-for-Purpose Dynamic Underbalance \bullet Perforation Using Unconventional Gun System in Offshore Well, Sarawak, Malaysia." Paper presented at the IADC/SPE Asia Pacific Drilling Conference and Exhibition, virtual, 8 June 2021. DOI: 10.2118/201061-MS
- Third-party provider information- Coiled Tubing BOP/ Lubricator/ Work Platform \bullet
- **Third-party provider information- Perforating Gun Systems** \bullet

QUESTIONS?

PS 2024

Case Study: Oilfield Completion Technology and Reservoir Analysis Optimizes Injectivity for Geothermal Water Production In the Netherlands

Author and Presenter: Kerry Daly, Expro

Slide 19

