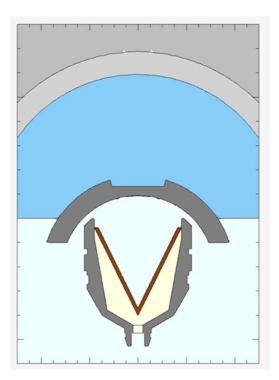


IPS 24 – 1.3

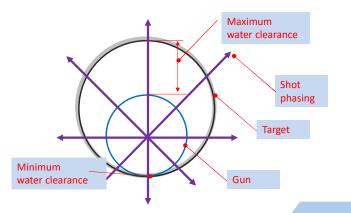
Development of Shaped Charges for Uniform Casing Hole

Presented by: Hongfa Huang

AUTHORS: Hongfa Huang, Terry Butler, Steve Henderson, Dave Austin, and John Fuller. SLB, Rosharon TX

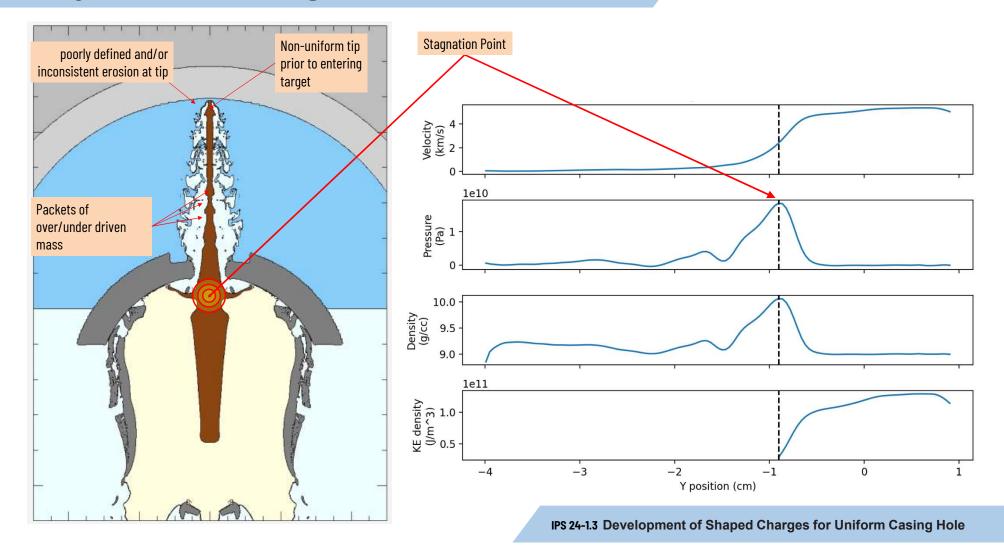

Outline

- Introduction
- Technical approach: Modeling & Simulation
- Designs validated in engineering and API 19B testing
- Summary

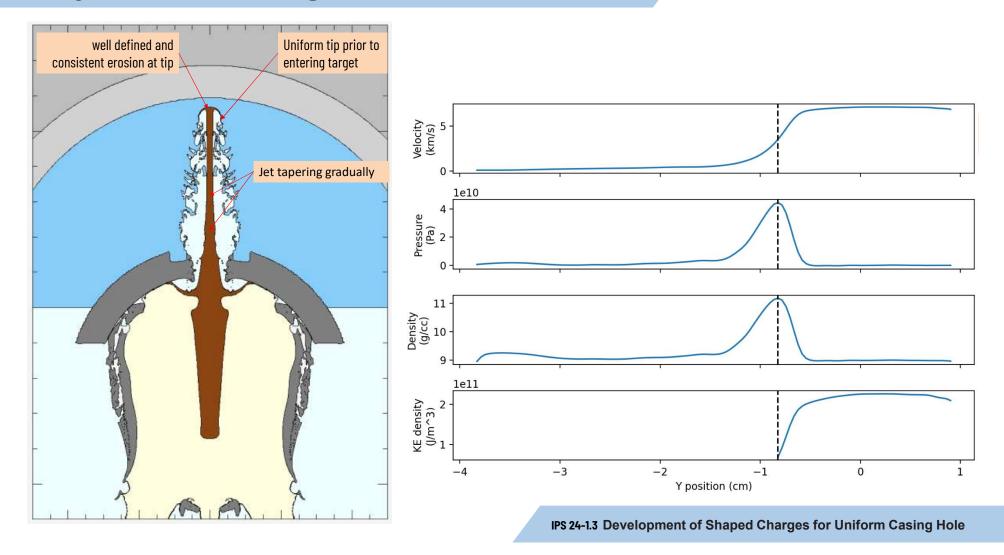

Introduction: Challenges in Charge Development

- Unconventional perforating operations demand uniform casing hole (UCH) charge.
- Such demands are seen in various operations such as Perf & Plug, PWC, and P&A.
- In limited entry fracturing, even distribution of treatment fluid requires UCH within a stage for the perfholes at different phases.
 - Challenge 1: Design charges to create UCH under different water clearances.
- Many charges to produce different UCH are required.
 - Challenge 2: traditional "trial-and-error" based design takes too long

Technical Approach: Modeling & Simulations



- Modeling and Simulation (M&S) is chosen to address the engineering challenges
- Search and find the design that produces consistent UCH (~5%)
- Long water clearance simulations prove more difficult to achieve good agreement with observed shot data.
- Good fit is typically observed in the medium clearance.



IPS 24-1.3 Development of Shaped Charges for Uniform Casing Hole

Jet Physics in the Designs of 10% Stdev UCH

Jet Physics in the Designs of 5% Stdev UCH

Charge Designs Validation in API System Tests

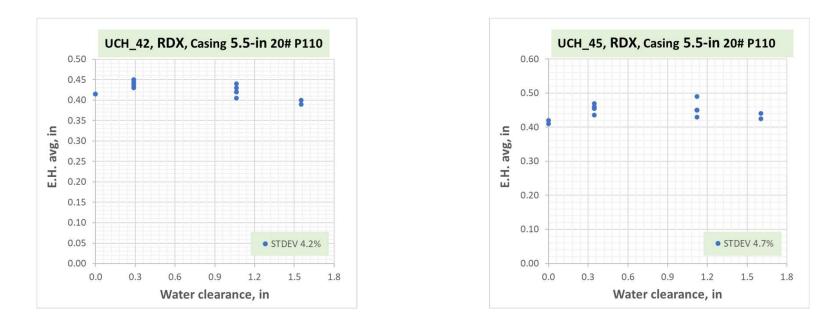
API 19B Section 1 testing results of uniform casing hole charges

Uniform Casing Hole (UCH) Charge	Water clearance, in	Penetration, in	Casing Exit Hole, in	Standard deviation (Stdev), in	STDEV %
UCH_35	0.0~1.60"	18.6	0.35	0.015	4.3%
UCH_38	0.0~1.60″	19.7	0.38	0.018	4.7%
UCH_40a	0.0~1.60″	22.1	0.40	0.017	4.3%
UCH_40b	0.0~1.60″	21.4	0.40	0.017	4.4%
UCH_42	0.0~1.60″	21.5	0.42	0.018	4.2%
UCH_45	0.0~1.60″	20.0	0.45	0.021	4.7%

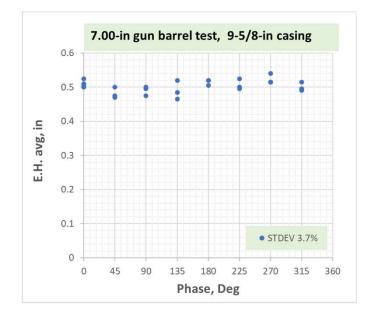
• API testing charges manufactured after Specs met in engineering QC shots

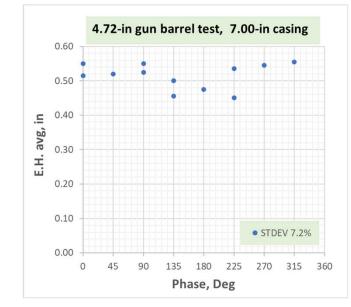
API 19B S1 cement target: OD=72-in, >=28 days Gun size: 3.12-in. Casing: 5.5-in, 20# P110

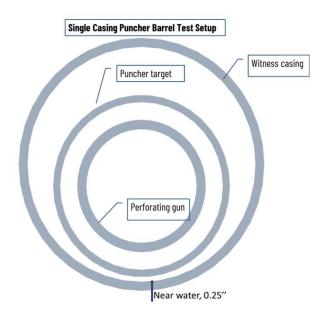
API 19B S1 Test Results for UCH_35 and UCH_38


• E.H. presents similar trend, decrease with water clearance, but at very low rate.

API 19B S1 Test Results for: UCH_40


• UCH_40 tested for 2 casing weight, the results EH and stdev are almost the same, though casing wall 0.05" difference.


API 19B S1 Test Results for: UCH_42 and UCH_45



- UCH_42 shows EH consistent except at long water.
- UCH_45 presents different trend, no visible drop at long water

Barrel Test Results for Punchers

Barrel test setup:

- Centralized gun in target casing
- The target casing sets 0.25" near witness casing
- Casing filled with water

Puncher			Avg. casing		Pene. on
for gun	Target casing	Witness casing	hole, in	STDEV	witness, in
4.72-in	7.0 26# L80	9-5/8 47# L80	0.51	7.2%	<0.1
7.00-in	9-5/8 47# L80	13-3/8 68# L80	0.50	3.7%	< 0.03

Summary

- The M&S approach enables efficient engineering design and testing
- Successfully developed five UCH charges and two casing punchers within relatively short time.
- The future work will apply the similar method to develop deep penetration charges.

QUESTIONS?

IPS 2024

Development of Shaped Charges for Uniform Casing Hole

AUTHORS: Hongfa Huang, Terry Butler, Steve Henderson, Dave Austin, and John Fuller SLB, Rosharon TX