

MIDDLE EAST AND NORTH AFRICA PERFORATING SYMPOSIUM

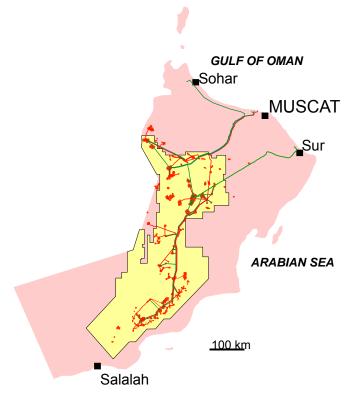
Laser Magnet for Retrieving Debris Case Study in High-Risk Wells

Presented By: Maryam AL Musalami Petroleum Development Oman

MENAPS-20-22 AUTHORS:

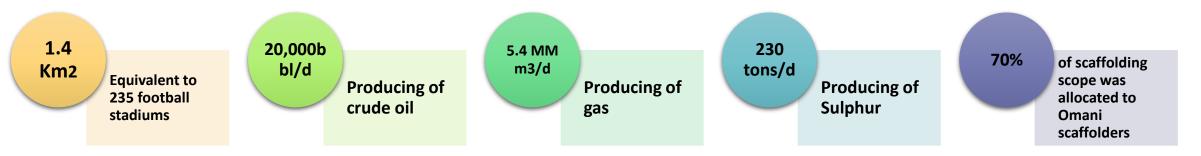
Maryam Musallami (PDO), Sumaiya Habsi (PDO), Tingting Zhang (PDO), Mohammed Taiwani (RAY International), Nasser Nadhairi (RAY International), Ibrahim Breiki (RAY International), Hanaey Ibrahim (DYNA Energetics), Qamar Zaman (INNOVAR)

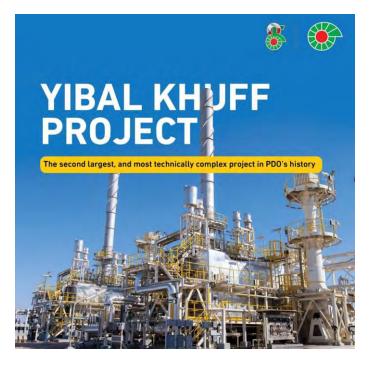
Content

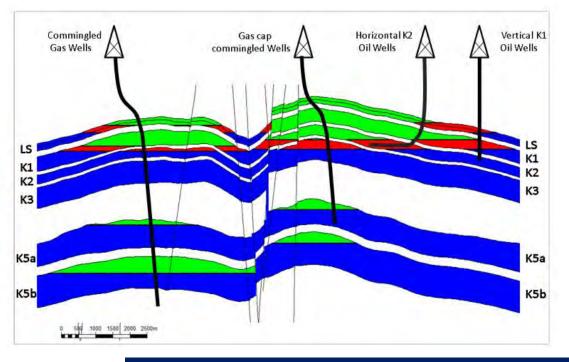

- Introduction
- Completion Strategy
- Horizontal Perforation Design
- PDO Case Study
- Productivity Charts
- Case Study Journey
- Summary
- Conclusion and Way Forward

Company and Partner Details

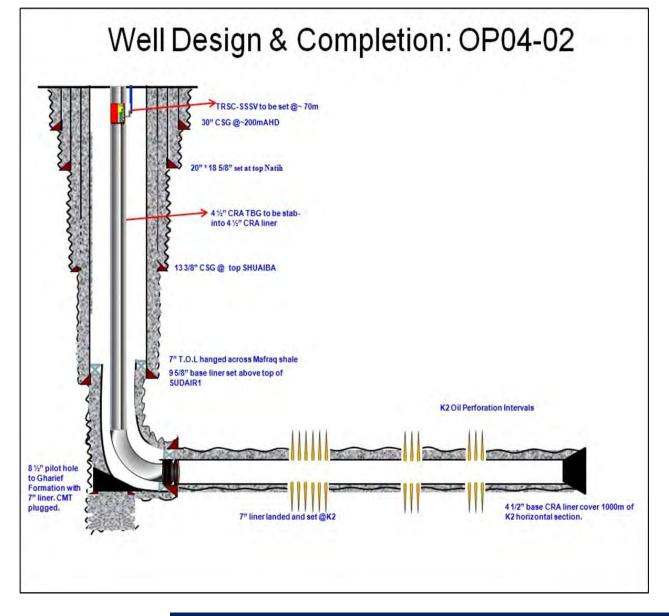
• Petroleum Development Oman (PDO)


- Major exploration and production company in the Sultanate of Oman
- It accounts for about 70% of the country's crude-oil production
- Nearly 100% of Nation's natural-gas supply.
- The Company is owned by the Government of Oman, a non-operating JV between
 - 60% Government of Sultanate of Oman
 - 34% Royal Dutch Shell
 - 4% Total
 - 2% PTTEP

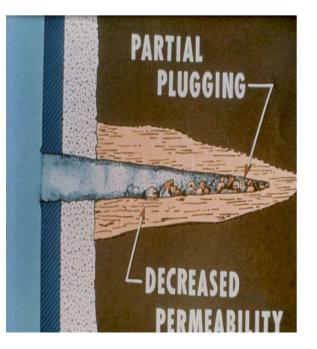



Yibal Khuff Project

The seconded largest and most technically complex project in PDO's history

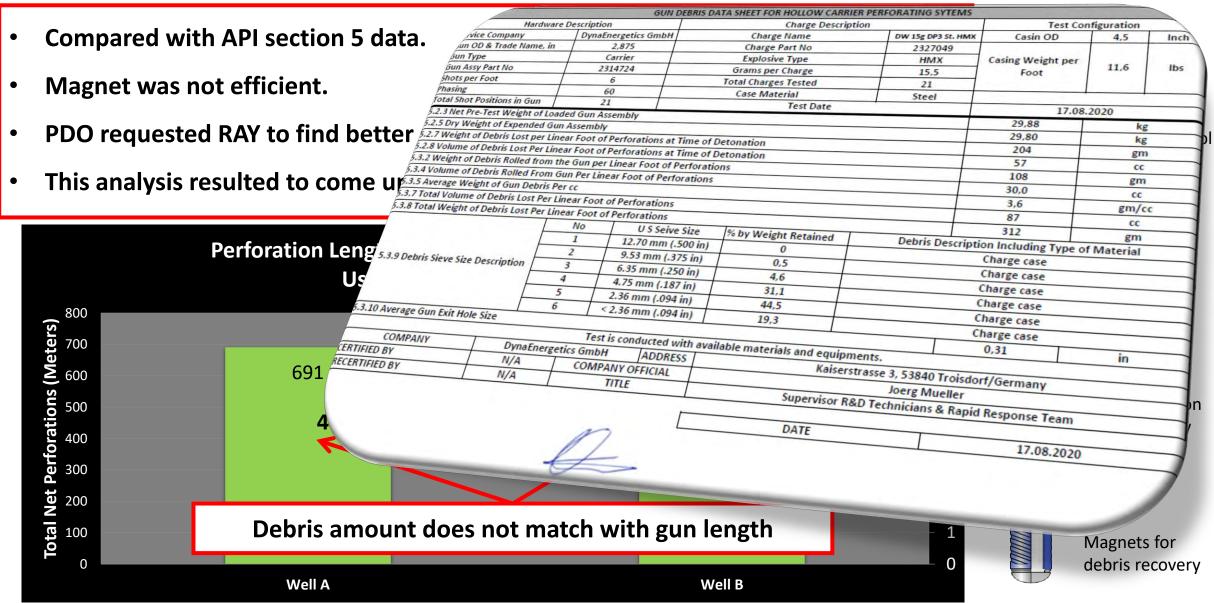

MENAPS-20-22 / UNHOLSTER WELL POTENTIAL USING CONVERGING SHOCKWAVES

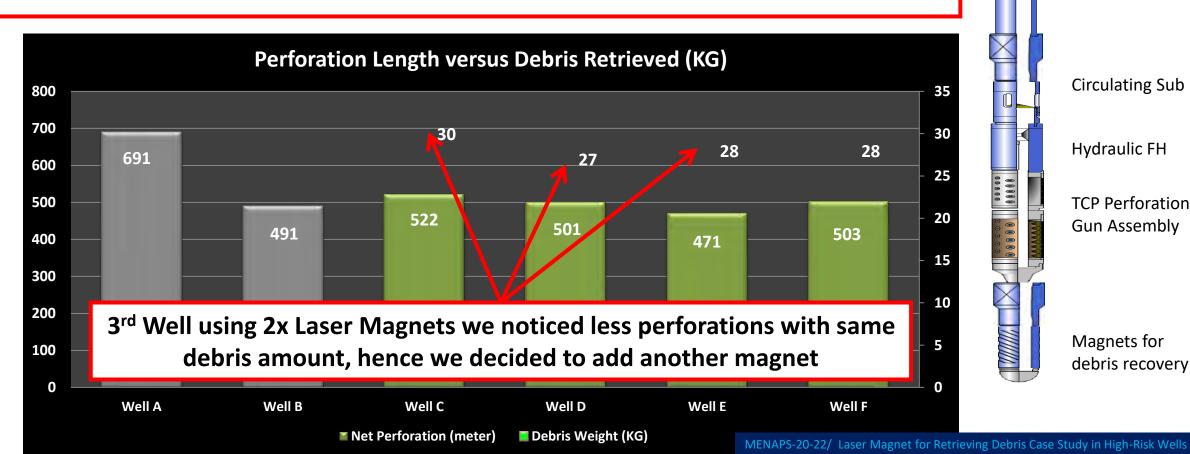
Horizonal well Perforation design


Plan Job:

- High sour well ~3.1 % ppm
- Long horizontal gun assembly ~ 1000 m (3300 ft)
- Perf interval around ~ 150 -700 m
- Gun size/type & shot density : 2.88" HSD, 6 SPF, DP3, HMX
- Multiple firring heads
- Tubing or gun swivels
- Conventional magnets
- Over balance perforation with coil tubing

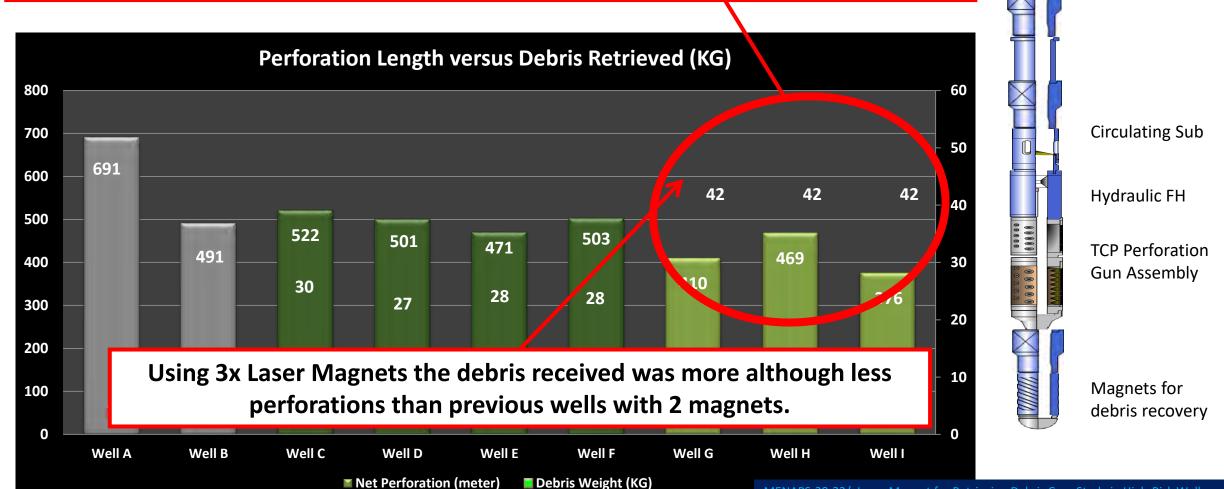
Completion Strategy


- 1. Cleanout trip with Coil Tubing.
- 2. TCP Overbalance Perforation.
- 3. Magnet to be used along with TCP Guns.
- 4. Acid Stimulation after perforation.


PDO Case Study – Conventional Magnets

PDO Case Study – 2 Laser Magnets

- 2x laser focused magnets was run in 4 wells with <u>28kg</u> average retrieved debris.
- Improved clean out versus conventional magnets was noticed.
- Different results suggests the capacity of ~14kg per magnet.
- This analysis resulted to add another magnet to the design.

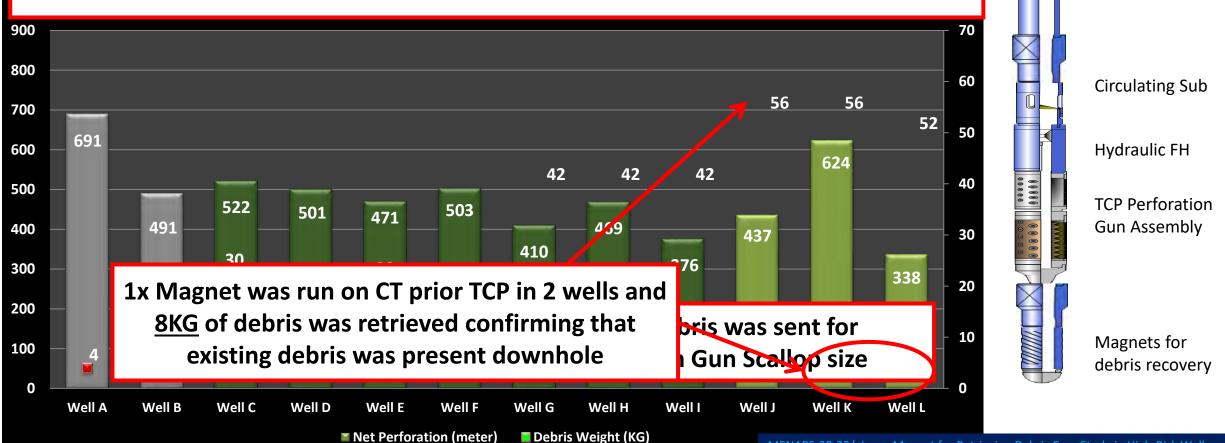


RA Marker Sub

for depth control

PDO Case Study – 3 Laser Magnets

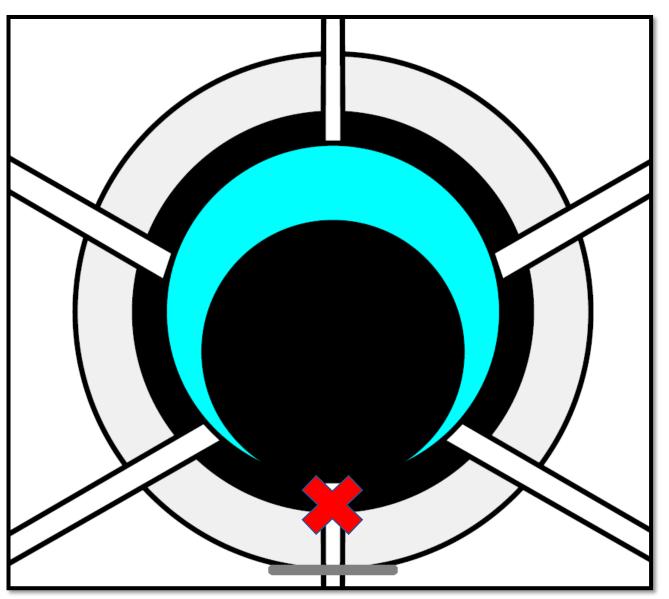
- 3x laser focused magnets was run in 3 wells; <u>42kg</u> retrieved debris in each well.
- This analysis resulted to add more magnets to the design.


MENAPS-20-22/ Laser Magnet for Retrieving Debris Case Study in High-Risk Wells

RA Marker Sub for depth control

PDO Case Study – 4 Laser Magnets

- 4x laser focused magnets was run in 3 wells with <u>56kg</u> max retrieved debris.
- Some retrieved debris was not coming from the perforation gun.
- This analysis resulted to <u>Run 1x Laser Magnet</u> prior Perforation Job on <u>Coil Tubing</u> during clean out trip.


RA Marker Sub

for depth control

Guns Debris & Productivity Model

- Selected gun type is 6spf based on model for best productivity ratios.
- Downhole condition cannot be confirmed. Hence, shots facing down may get plugged with debris.
 (20 shots plugged in every 20ft gun)
- Productivity will reduced to match 5 SPF instead of 6 SPF.
- During gun POOH debris will plug more tunnel facing down.
- Surface facility may be effected during production at due to debris left in hole.
- Debris downhole causes limitation on future interventions.

Debris Photos from Laser Magnets

MENAPS 2022 HUDLE EAST AND HURTH AFRICA PERFORATING SYMPOSIUM

• Photos from YK Horizontal wells after POOH TCP guns with Laser Magnets

Debris Photos from Laser Magnets

• Debris collected using Laser Magnets

Well Name	Number of Magnets	Debris Retrieved (KG)	Comments
Well C	2	30	Horizontal Well
Well D	2	27	Horizontal Well
Well E	2	28	Horizontal Well
Well F	2	28	Horizontal Well
Well G	3	Horizontal Well	
Well H	3	42	Horizontal Well
Well I	3	42	Horizontal Well
Well J	4	56	Horizontal Well
Well K	4	56	8kg in CT Run with 1 magnet
Well L	4	52	5kg in CT Run with 1 magnet
Well N	1	7	Run Magnet with Coil Tubing
Well AB	1	15	Horizontal Well
Well FE	1	5	Vertical Well (Solid Debris)

STRING MAGNETS

laser focused magnet technology Maximum magnetic force against the pipe wall

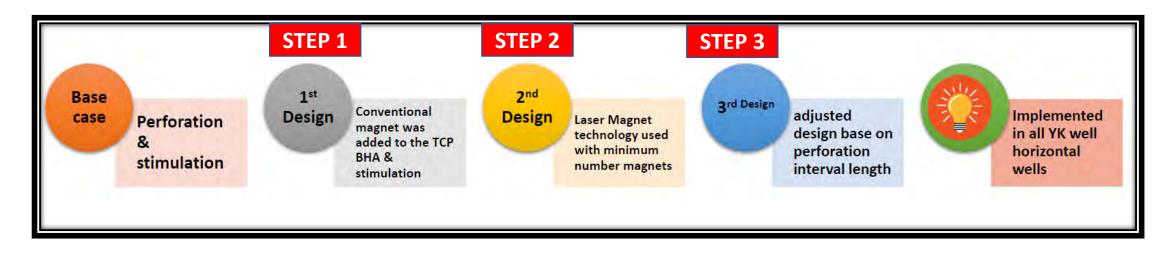
Medel	MicorrigAM	Maglast
Model	IM 1955 10AM	IM 28L 15AM
Max OD, inch	1,9	2,75
Min ID, inch	0,5	1,0
Fish neck OD, inch	1,56	2,0
Length, mm	1757	1540
Material properties		
Body material	AISI 4140	AISI 4145
Tensile Yield strength, lbs	45 000	87 000
Torosional Yield strength, ft-lbs	510	1 470
Magnet Ribs on stabilizer	4	6
Operational data		
Flow by area, sq.in	1,5	7.1
Inside	2 7/8" 8,7#	4,5" 12,6#
Max rotation, rpm	150	150
Connection	1"AMMT	1,5" AMMT
Transport Data		
Tool weight, kg	14.5	23

MENAPS-20-22/ Laser Magnet for Retrieving Debris Case Study in High-Risk Wells

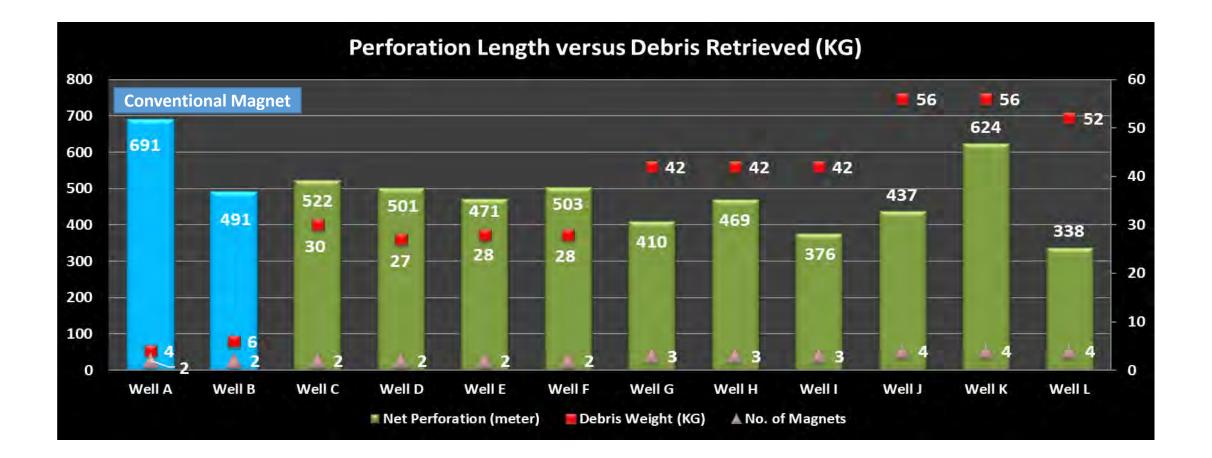
Debris Retrieved from Vertical Well

• Run Laser Magnet on Vertical Well; retrieved 5kg with 1 magnet - <u>16m net perforations</u>

Well Name	Number of Magnets	Debris Retrieved (KG)	Comments
Well FE	1	5	1 st Vertical Well


imber: RAY-OF-FRM-14 f Interval:	RAY-OF-FRM-1402 (1.0) al: <u>Heed to confirm the PERFORATION intervals at wellsite</u> 1570 - 1578 (8m) ,1500 - 1508 (8m) MAHBDF				Gun Type: 4.5 HSD DP, 22.7 gm 12 SPF RDX					
	Final - TCP	Under Bal	ance (S	hoot &	Pull) String	Diagram				
Tool String	Description	Responsible Company	(").0.0	1.0.(")	Box.	Pin.	Length. (m)	Top Deoth. (m)Mahbd/	Bottom Depth(m)Mahbd	
	Circulation Head	PDO	11.000	3 080			0.50	-1.80	-1.30	
	3 1/2" EUE (9 3#) TBG to surface 81 Stand & 1 joint.	PDO	4.500	2.990	3.5" EUE	3.5° EUE	1512.92	-1.30	1611.62	
a -	3 1/2" EUE RA Marker 1511.73 PIP TAG.	RAY	4.500	2.990	3.5" EUE	3.5" EUE	0.15	1511.62	1511.77	
	2 joints of 3 1/2" EUE tubing	PDO	4.500	2.990	3.5" EUE	3.5" EUE	18.60	1511.77	1630.37	
T	3 1/2" EUE PUP Joint.	RAY	4 500	Z.990	3.5" EUE	3.5° EUE	1.86	1630.37	1632.23	
	7" Mechanical Retrievable Packer	RAY	5.970	2.440	3.5" EUE	3.5" EUE	2.97	1532.23	1635.20	
	Crossover 2 7/8" EUE PIN & 3 1/2" EUE BOX	RAY	3.670	2.440	2.875" EUE	2.875" EUE	0.25	1535.20	1635.46	
Ĩ	I ea 2 7/8° EUE TBG Joints	PDO	3 670	2.440	2.875" EUE	2.875" EUE	941	1535.45	1644.86	
	2 7/8" EUE Drop bar pressure vent (BPV)	RAY	3 670	2.440	2.875" EUE	2.875" EUE	0.43	1544.88	1645.29	
	2 ea 2 7/8' EUE TBG Joints	PDO	3 670	2 440	2.875" EUE	2.875" EUE	18.78	1545.29	1564.07	
	Drop Bar Mechnical Firing Head (2-7/8")	RAY	3 670		2.75° GO	2.875"EVE	1.70	1564.07	1665.77	
南	4.6" Bafety Spacer	RAY	4.500		2 375' 6 TPI	2.375° 6 TPI	4.23	1585.77	1670.00	
	4.60" HSD, DP, 12 SPF, RDX	RAY	4.500		2.375" 6 TPI	2.375" 6 TPI	8.00	1670.00	1578.00	
	4.5" Blank	RAY	4.500		2.375' 8 TPI	2.375° 0 TPI	22 00	1678.00	1500.00	
j i	4.50" HSD, DP, 12 SPF, RDX	RAY	4.500	****	2 375" 6 TPI	2.375" 6 TPI	8.00	1600.00	1608.00	
(日)	Blind Crossover	RAY	4 500			2 375° 6 TPI	0.27	1608.00	1608.27	
A	Crossover assembly	RAY	3.680	2 000	2.875" EUE	2.75 EUE	0.70	1608.27	1608.97	
	Magnet looi	RAY	3.680	2.000	2.75" EUE		2.01	1608.97	1610.98	
- 41		- 8	-	-						

Well Name	Total perforated interval/ m	Oil rate / m3/d	GOR /m3/m3	FTHP /bar	Number of Magnets	Debris Retrieved (KG)	Comments
Well A	736	24	100	22-28	2	4	Conventional Magnet
Well C	522	112	130	23	2	30	Laser Magnet
Well E	502	69	97	54.68	2	28	Laser Magnet
Well M	751	133	119	112	4	56	Laser Magnet


Case Study Summary

- PDO & RAY cooperated and ended up implementing usage of Laser focused magnet.
- Deep analysis during the journey resulted the use of 4x laser focused magnets.
- Debris examined lead to additional CT magnet run before perforation job.
- A magnet run on vertical well lead to retrieve 5kg of debris.
- Further study for Vertical Wells to be implemented as way forward.

MENAPS-20-22/ Laser Magnet for Retrieving Debris Case Study in High-Risk Wells

Conclusion and Way Forward

- Laser focused technology magnets was implemented for most PDO horizontal perforations in all fields.
- Acid stimulation runs was removed from YK camping wells
- Laser magnets were run in 2 wells with CT prior RIH with TCP Guns and recovered (8kg) per well.
- Laser magnet were run in vertical wells and retrieved (5kg) of debris with short perforations.
- To correlate between perforation gun strings and required magnet joints from case history to update SOP.

MIDDLE EAST AND NORTH AFRICA PERFORATING SYMPOSIUM

MENAPS-20-22 AUTHORS:

Maryam Musallami (PDO), Sumaiya Habsi (PDO), Tingting Zhang (PDO), Mohammed Taiwani (RAY International), Nasser Nadhairi (RAY International), Ibrahim Breiki (RAY International), Hanaey Ibrahim (DYNA Energetics), Qamar Zaman (INNOVAR) <u>MENAPS-20-22/ Laser Magnet for Retrieving Debris Case Study in High-Risk Wells</u>