

MIDDLE EAST AND NORTH AFRICA PERFORATING SYMPOSIUM

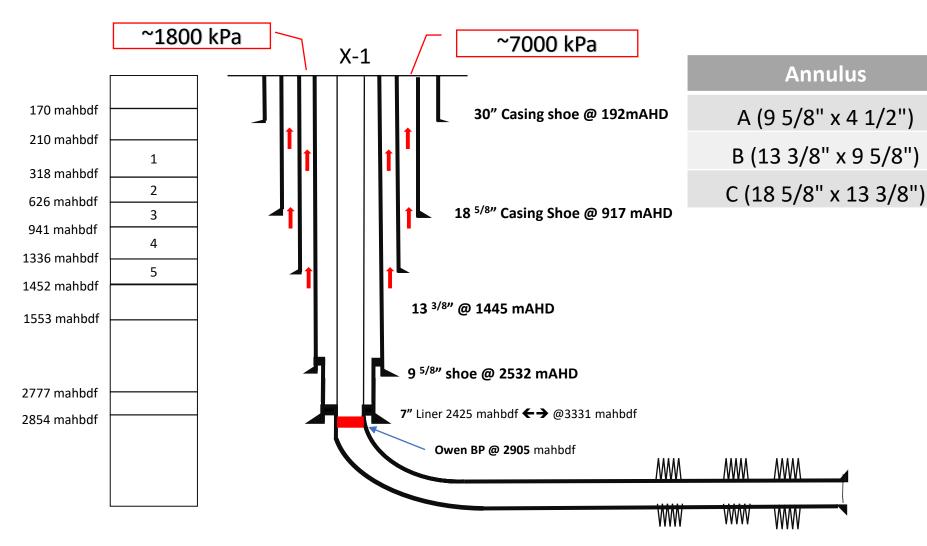
Innovation of Double Casings Charge to Overcome Annuli pressure Build Up

Presented By Hassan Al Lawati PDO

Outline

- Problem statement
- Identifying pressure source
- Repair option
- Job Preparation and requirement
- Results
- Conclusion

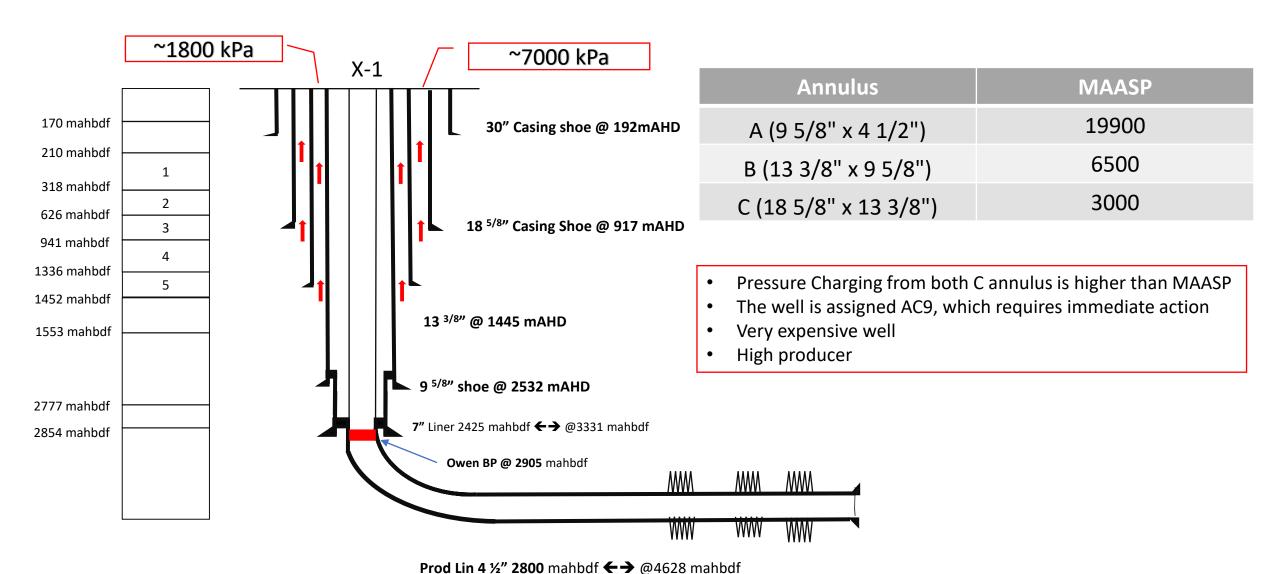
Problem statement



MAASP

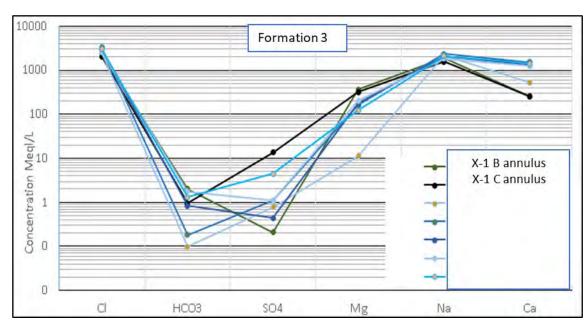
19900

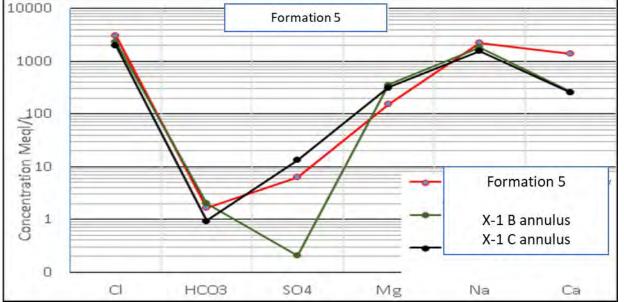
6500


3000

Prod Lin 4 ½" 2800 mahbdf ←→ @4628 mahbdf

Problem statement

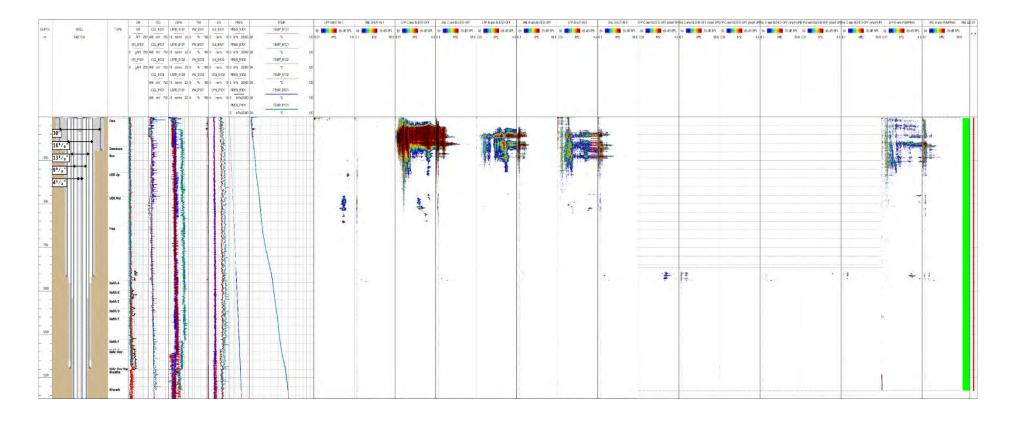



- In order To identify the pressure source, the following investigation/logs were required:
 - Fingerprinting analysis
 - Corrosion log
 - Temperature log
 - SNL & A.I

- In order To identify the pressure source, the following investigation/logs were required:
 - Fingerprinting analysis
 - Corrosion log
 - Temperature log
 - SNL & A.I

No Exact match was found with either Shuaiba or Natih Fluid

- In order To identify the pressure source, the following investigation/logs were required:
 - Fingerprinting analysis
 - Corrosion log
 - Temperature log
 - SNL & A.I


All Strings were in good integrity condition with no metal loss

				Corrode	d Interval	Av.	Max.		
String Type	Pipe Installation	OD	Weight	Тор	Bottom	Metal Loss	Metal loss	Level of Corrosion	Corrosion Status
		(in)	lb/ft	mbdf	mbdf	%	%		
Completion string	2011	4.5	11.6	8.8	2585.1	0	0	None	Pass
Production Liner	2011	7	29	2428.8	2585.1	0	0	None	Pass
Production Casing	2011	9.625	53.5	9.1	2533.1	0	0	None	Pass
Intermediate Casing	2011	13.375	72	8.9	1444.6	0	0	None	Pass

- In order To identify the pressure source, the following investigation/logs were required:
 - Fingerprinting analysis
 - Corrosion log
 - Temperature log
 - SNL & A.I.

Noise was captured across Natih

Repair Options

Available repair options

- 1- Conventional perforation and cement squeeze
 - wasn't done across two annuli
 - Requires applying pressure against formation (risk of formation fracture)
 - In case of patchy cement is behind the casing the effectiveness of the job is compromised
- 2- Local expander (new Technology)
 - Used for single annulus repair (not applicable)
- 3- Perf, wash & cement (PWC) (new Technology)
 - Cement placed without squeezing (no risk of formation fracture)
 - Proper annuli wash to remove cement patches

Repair Options

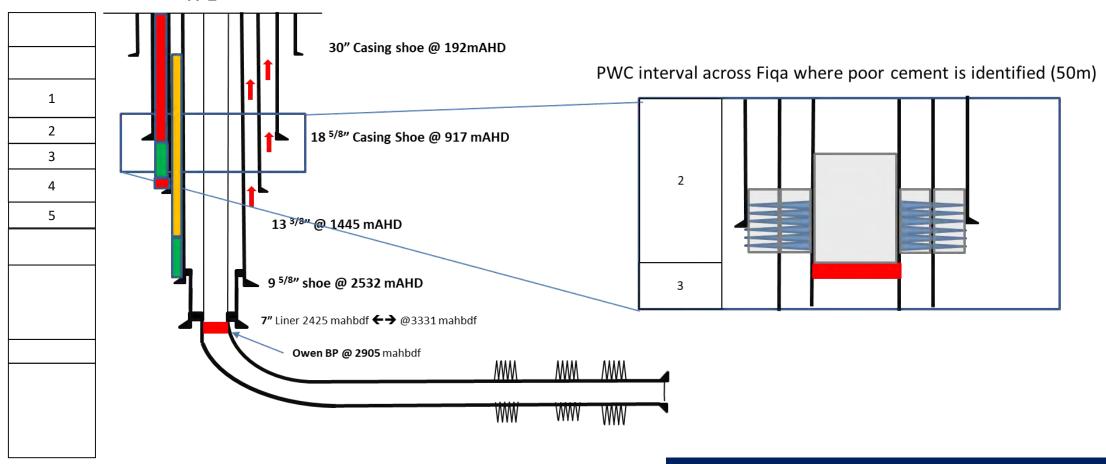
PWC technique:

- 1. Perforating the casing or liner.
- 2. Washing the perforated annulus.
- 3. Placing spacer fluid in the casing and annulus.
- 4. Placing barrier material in the casing and annulus

Probability of success:

The technology was tried in 4 wells

- succeeded in 3 (single annulus repair)
- failed in 1


Job Requirements:

- Poor or no cement across both annuli in against Natural barrier
- Guns with EHD of 0.5" across both casings (SM95s 9 5/8" #53.5 & 13 3/8" L80 #72) without penetrating the third casing & 12spf shot density (no Gun was available in country with this specification)
- Pumps with a pumping rate of 1.6m3/min

- Poor or no cement across both annuli in against Natural barrier
- Guns with EHD of 0.5" across both casings without penetrating the third casing (no Gun was available in country with this specification)
- Pumps with a pumping rate of 1.6m3/min

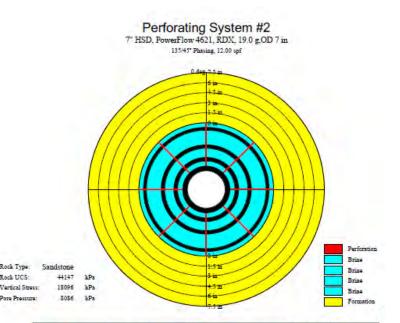
- Poor or no cement across both annuli in against Natural barrier
- Guns with EHD of 0.5" across both casings without penetrating the third casing (no Gun was available in country with this specification)
- Pumps with a pumping rate of 1.6m3/min

Two vendors were approached to conduct the job.

Vendor A has shared simulations on available commercial guns.

Vendor A simulation cases:

#	Name	Chg Wt	Gun OD	API Pen	API EH	Comment
		(g)	(in)	(in)	(in)	
1	4-1/2" HSD, PowerFlow 4621, RDX	19.0	4.5	5.90	0.83	Based on RP43 5th Ed
2	7" HSD, PowerFlow 4621, RDX	19.0	7	5.90	0.83	Based on RP43 5th Ed
3	7" HSD, PowerFlow 5008, RDX	30.0	7	5.80	0.98	RP43 C-33M
4	7" HSD, HyperJet 4505, RDX	38.8	7	37.00	0.57	Based on RP43 5th Ed
5	4-1/2" HSD, HyperJet 4505, RDX	38.8	4.5	37.00	0.57	RP43 C-33M



Brine

Perforating System #1 4-1/2" HSD, PowerFlow 4621, RDX, 19.0 g, OD 4.5 in 135/45" Phasing, 12.00 upf 6 in 4-5 in 1-5 in 1-5 in Brina Brina Brina

Angle (deg)	Clearance (in)	Total Pen ^ (in)	Form Pen ^ (in)	Form Dia (in)	Csg EH Dia	Perf Tunnel Area (in2)	Perf Tunnel Volume (in3)
0	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
45	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
90	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
135	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
180	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
225	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
270	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
315	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
Average	2.02	5.36	0.00	0.00	0.37/0.14/0.08	0.00	0.00
			AC	F (cm2/m)	26.83/3.83/1.16	at 12.00 spf	

API: Pen 5.90 in, EH Dia 0.83 in, Based on RP43 5th Ed. ^ Concrete-based Model

Angle (deg)	Clearance (in)	Total Pen ^ (in)	Form Pen ^ (in)	Form Dia (in)	Csg EH Dia (m)	Perf Tunnel Area (m2)	Perf Tunnel Volume (m3)
0	0.77	5,70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
45	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
90	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
135	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
180	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
225	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
270	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
315	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
Average	0.77	5.70	0.00	0.00	0.84/0.32/0.17	0.00	0.00
			AC	F (cm2/m)	40.40/20.05/6.07	at 12.00 spf	

Rock Type: Sandstome
Rock UCS: 44147 & Pa
Wertical Stress: 18096 Pp

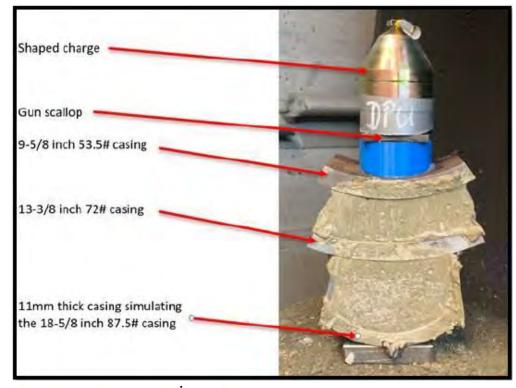
Perforating System #3

7" HSD, PowerFlow 5008, RDX, 30.0 g,OD 7 in

Angle (deg)	Clearance (in)	Total Pen ^ (in)	Form Pen ^ (in)	Form Dia (in)	Csg EH Dia (in)	Perf Tunnel Area (in2)	Perf Tunnel Volume (m3)
.0	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
45	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
90	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
135	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
180	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
225	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
270	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
315	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
Average	0.77	5.54	0.00	0.00	0.99/0.37/0.20	0.00	0.00
			AC	F (cm2/m)l	3.92/27.16/8.16	at 12.00 spf	

API: Pen 5.80 in, EH Dia 0.98 in, RP43 C-33M ^ Concrete-based Model

Pore Pressure:

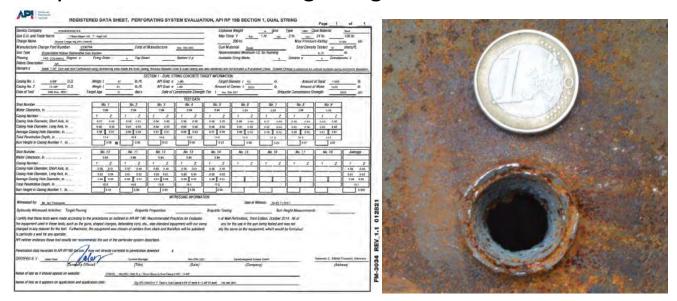


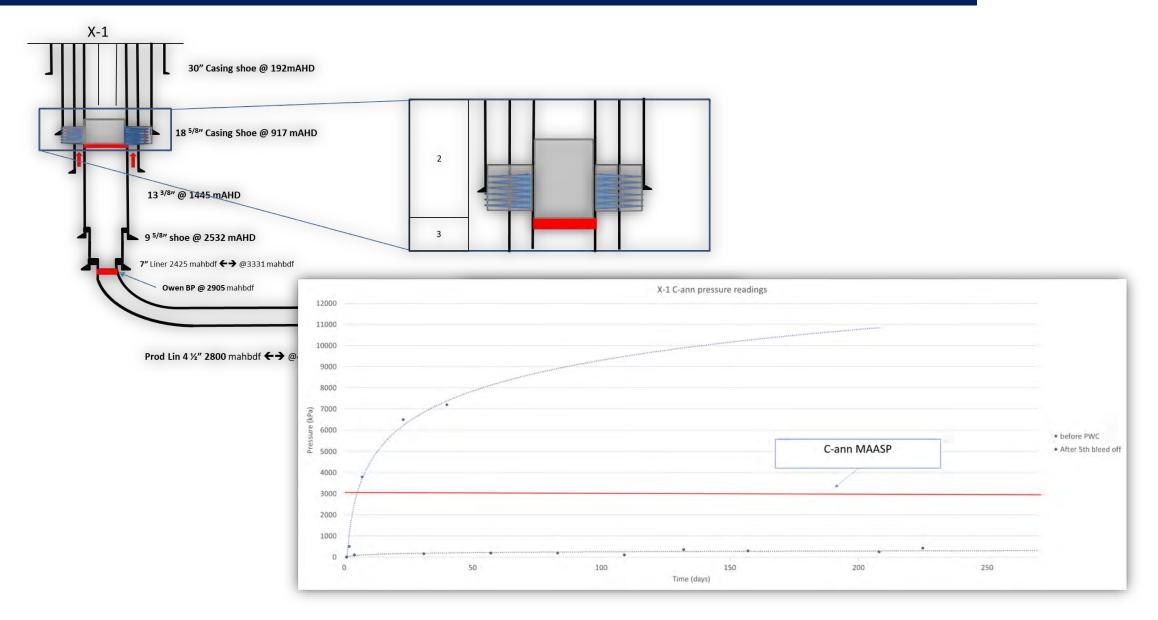
Vendor B have highlighted that they have manufactured guns with this specification on order basis but wasn't tested across two casings.

We have requested them to carry a gun test for assurance

	EHD in 9-5/8" casing	EHD in 13-3/8" casing	Indentation depth 18-5/8" casing
Test 1 39g DPU	0.61 inch	0.50 inch	0.08 inch
Test 2 39g DPU	0.61 inch	0.50 inch	0.10 inch

Gun Size/Type & Shot Density 7" HSD, 12 SPF, 39g DPU, HMX




- 39g DPU is a specially engineered shaped for multiple casing applications.
- 39g DPU is the result of many finite element simulations and casing configurations shots, and it offers nearly constant entry hole across two casing string.

The large EHD (≥ 0.50 in across both casings) made the 39g DPU the charge of choice for perf-wash-cement operations across double casing completions.

Results

MIDDLE EAST AND NORTH AFRICA PERFORATING SYMPOSIUM

Q&A