2019 NAPS North America Perforating Symposium

AND SAFETY FORUM

DALLAS - FORTH WORTH. AUGUST 5-6, 2019.

2019-NAPS-2.3

AUTHORS: Bernd Fricke, Davood Yosefnejad, Dr. Joern Loehken, Denis Will, DynaEnergetics.

Dynamic Overbalance vs. Dynamic Underbalance:

Overview

- Motivation
- Description of the test setup
- Dynamic Overbalance vs. Dynamic Underbalance vs. Extreme Dynamic Underbalance
- Differences in Productivity
- Summary and Outlook

Motivation

- Previous tests of encapsulated 23g HNS DP charges before and after temperature exposure revealed clean, open tunnels on Bentheimer Gildehaus Sandstone
- The same was observed for encapsulated 23g HMX DP charge on Berea under very high overburden pressure (20kpsi)
- Other studies also observed clean tunnels in conjunction with dynamic overbalance (SPE 189490)
- Systematic Research on the influence of DOB vs. DUB
 - Influence of DOB and DUB on tunnel geometry and flow?
 - How does the permeability and porosity of the rock influence the results?

Bentheimer

à

2 • 3⁵ 4¹¹ 5¹¹ 6^C (7¹¹ 8¹¹ 9 10 11 12 13 14 15 16 17 18 19 2

Test Setup

• Shaped Charge: 15g HMX, Deep penetrating, standard and encapsulated

•	Rocks	UCS [psi]	Porosity [%]	Permeability [mD]
	Bentheimer	3.500 - 4.500	20 - 22	800 - 1.600
	Berea	8.000 - 9.000	17 - 18	95 - 120
	Roter Bunt	9.000 - 10.500	10 - 14	3 - 20

•	Free Gun Volume (FGV)	Equivalent to
-	1130 cm ³	0.66 spf in a 2 7/8" Gun
		2 spf in a 4.5" Gun
	125 cm³	6 spf in a 2 7/8" Gun
		18 spf in a 4.5" Gun
	0 cm ³	Encapsulated charge system

Test Setup

Balanced conditions:

- Overburden Pressure: 6500 psi
- Pore pressure: 3000 psi
- Wellbore pressure: 3000 psi
- Fluid: OMS
- Accumulators activated

Gun volumes:

- Extreme DUB: 1130cm³
- Conventional DUB: 125cm³
- DOB: Encapsulated charge directly in fluid

green: air filled

Results

Pressure Curves of different setups

14.44"

Bentheimer

Berea

Results – Extreme DUB

Bentheimer

- TTP: 14.44"
- Clear Tunnel Depth:
- Tunnel Volume: 113.0 cm³

Berea

- TTP: 14.20"
- Clear Tunnel Depth: 12.35"
- Tunnel Volume: 41.5 cm³

Roter Bunt

- TTP: 12.98"
- Clear Tunnel Depth:
- Tunnel Volume:

10.66″ 20.6 cm³

Results – Extreme DUB

Bentheimer

Berea

Results – normal DUB

Bentheimer

- 13.84" TTP: 4.52"
- Clear Tunnel Depth:
- **Tunnel Volume:**

Berea

- TTP:
- Clear Tunnel Depth:
- **Tunnel Volume:**

13.57"

23.0 cm³

7.51"

35.1 cm³

49.0 cm³

12.66"

8.27"

Roter Bunt

- TTP:
- Clear Tunnel Depth:
- **Tunnel Volume:**

6^{C€}7^{MIA}8[™]9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31

Results – normal DUB

Pressure curves with normal DUB on different rocks

2019-NAPS-2.3 API 19b Section IV testing of encapsulated shaped charges compared to conventional hollow steel carrier guns

AND SAFETY FORUM

14.36"

12.47"

6.1 cm³

2 0 3 5m 4

3.30"

101.0 cm³

Results – DOB

Bentheimer

- TTP: 14.36"
- Clear Tunnel Depth:
- **Tunnel Volume:**

Berea

- 12.39" TTP: 12.39"
- Clear Tunnel Depth:
- **Tunnel Volume:** 46.9 cm³

Roter Bunt

- TTP:
- Clear Tunnel Depth:
- **Tunnel Volume:**

6CE71148 12 9 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 RM 31

• 3^{5m} 4⁻⁰ 5^{−0} 6^{(€} 7¹¹¹ 8[∞] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Roter Bunt

ũ

2019 NAPS North America Perforating Symposium AND SAFETY FORUM

Results – DOB

Pressure Curves with DOB on different rocks

Results – DOB

Results

Roter Bunt

DOB

Results

Productivity Ratio

Berea

conventional DUB

Observations

- As expected a more realistic free gun volume lead to a reduction in DUB and free tunnel length compared to tests with very large free gun volumes.
- Encapsulated charges create an dynamic overbalance which is comparable to conventional hollow carrier guns with 6spf, but without any DUB
- However encapsulated charges created on average cleaner tunnels than charges shot in normal guns
- Hypothesis: for conventional guns the gas stream escaping through the gun scallop hole disturbs flow dynamics
- Positive effect of DOB on free tunnel length decreases with decreasing permeability
- Transient behavior of DUB and DOB depend on rock permeability
- No obvious tip fractures visible on sandstone for all setups

Outlook

- Broaden the study to different rocks, like carbonates, quartzite and other
- Deduce CFE values
- Research on the underlying physics
 - FEM Modelling of the fluid dynamics
 - Petrophysical investigation of differences in crushed zone strength (SPE 122845)
- Review the influence of the test setup

References

- Satti, R., White, R., Ochsner, D., Sampson, T., Zuklic, S., & Geerts, S. (2018, February 7). A Flow Laboratory Study of an Enhanced Perforating System Designed for Well Stimulation. Society of Petroleum Engineers. doi:10.2118/189490-MS
- Heiland, J. C., Grove, B. M., Harvey, J. P., Walton, I. C., & Martin, A. J. (2009, January 1). New fundamental insights into perforation-induced formation damage. Society of Petroleum Engineers. doi:10.2118/122845-MS

QUESTIONS? THANK YOU

AND SAFETY FORUM

DALLAS - FORTH WORTH. AUGUST 5-6, 2019.

2019-NAPS-2.3

AUTHORS: Bernd Fricke, Davood Yosefnejad, Dr. Joern Loehken, Denis Will, DynaEnergetics.