2019 NAPS North America Perforating Symposium

AND SAFETY FORUM

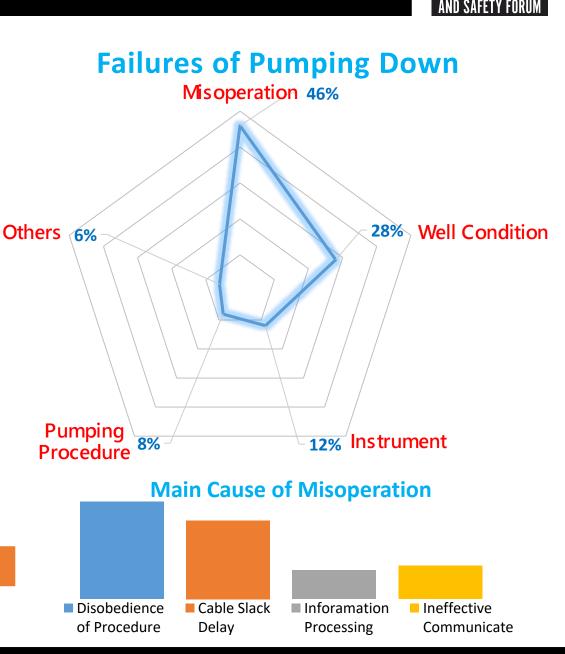
DALLAS - FORT WORTH. AUGUST 5-6, 2019.

2019-NAPS-XX

AUTHORS: Zhao Xindi, Ma Ziqiang, Zhang Qingbin China National Petroleum Corporation.

ENERGETIC TESTING AND TECHNOLOGY **DEVELOPMENTS SECTION I: Improving Pumping Down Efficiency and Safety with** Intelligent Assisting System

CONTENTS


- Background
- System Composition
- Application
- Conclusion

BACKGROUND

- The increase or decrease of pumping volume varies from person to person, depending on experience.
- Cable speed mismatching tool speed [,] wireline damaged caused by excessive tension of cable head or cable slack.
- Processing a lot of pumping down data instantaneously [,] adding crew member and increasing risk.
- Ineffective communication with winch driver and pump operator.

Pumping down failure causing great amount of cost loss.

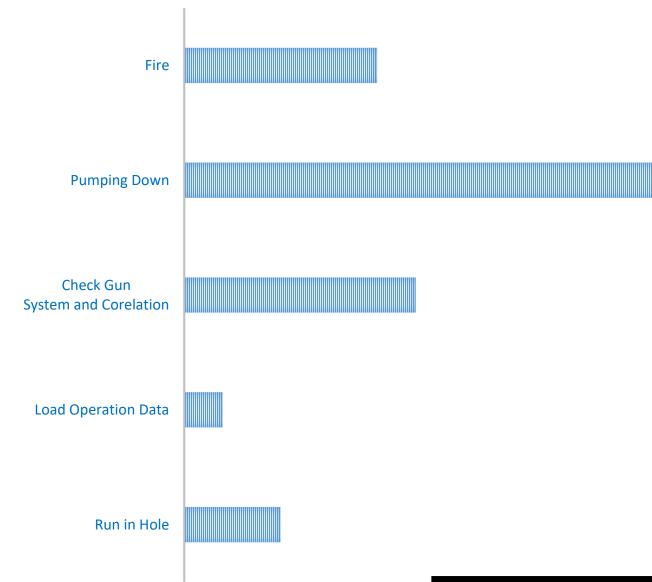
BACKGROUND

Plug and Perforating Process

<u>Run in Hole</u>

Load Operation Data

Check Gun System and Corelation


Pumping Down

BACKGROUND

Where can be improve in Pumping Down Perforating

- Perforating data record
- Pumping down procedure
- Pumping volume control
- Wireline & string control
- Correlation
- Standardized operation report

Pumping Down Simulation Pumping Down Assisting System Remote Supporting System

AND SAFETY FORUM

Winch Driver Assisting

Remote Supporting System

→ 用限設 用力(時間) 用力(時間) 用力(時間) 使送用力 使送用力 使送用力 (10)

Pumping Down Simulation

- Basic Data
- Pumping Down Simulation
- Depth Correlation
- String Speed Calculation
- Wireline Status
- Voice Promoting
- Firing & Locating Control
- Remote Assisting

Basic Data

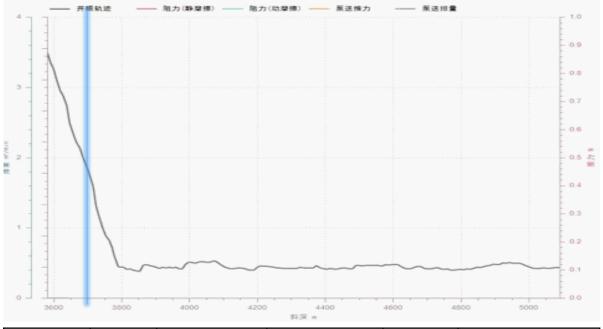
Basic Data Files of the Intelligent Assisting System

		桥塞	9999	1	 序号	井 深↩	井 斜,	方 位↔	垂 深₊	N e'	E 🖓	狗腿度	闭合方位。	闭合距↔	定位短节3	3319. 325	10.64
1	1+2	1.5	5337-5338.5	0	, 17 S ((m)+2	(°),	(°),	(m) 🖓	(m)~	(m) 🖓	(°/30m)+	(°),	(m).	1	3330. 612	11.287
		1.5	5317-5318.5	0	81.0	2354.55+	43.73 <i>↔</i>	203.09₽	2321.82+	22.07+	-133.43+	4.94₽	279.39+	135.24+	1	5550.012	11.207
2	1+3	桥塞	5303	1	82+2	2383.36+	49.80+	202.45+	2341.55+	2.73+2	-141.55+	6.34+	271.10+	141.57.	2	3341.908	11.296
		1	5285-5286	0											3	3353.098	11.19
		1	5262-5263	0	83 ₽	2412.07+2	55.59₽	203.17 @	2358.94+	-18.32 <i>+</i>	-150.39 <i>+</i>	6.08₽	263.06+2	151.51@	0	3333. 036	11.15
		1	5242-5243	0	84 🕫	2441.59+	59.22+2	200.17	2374.84	-41.42 e	-159.58+	4.50₽	255.45+	164.86~	4	3364.387	11.289
3	1+3	桥塞	5230	1	85₽	2471.23+	59.33 <i>÷</i>	200.47 +2	2389.98+	-65.32 ¢	-168.42 <i>+</i>	0.28+2	248.80+2	180.65	5	3375. 691	11. 304
		1	5217-5218	0	86.0	2499.71+	63.30+	200.45+2	2403.65+	-88.72+	-177.16+	4.18+	243.40+	198.13 <i>+</i>			
		1	5198-5199	0											6	3387.004	11.313
		1	5180-5181	0	87₽	2528.78+	70.09₽	198.54 @	2415.15+	- 113.87+	-186.06+2	7.24₽	238.53+	218.14	7	3398. 288	11.284
4	1+3	桥塞	5169	0	≎88	2558.25+	72.25+2	195.04 @	2424.66~	- 140.57÷	- 194.12 <i>₽</i>	4.03*	234.09+2	239.67*	'	0000.200	11.204
		1	5153-5154	0	89 ₽	2587.52+2	72.91÷	187.72 🕫	2433.42+	-167.93 <i>+</i>	-199.62 <i>+</i>	7.19₽	229.93+2	260.86+	8	3409.57	11.282
		1	5136-5137	0	90 <i>+</i> 2	2615.60+	70.71	181.47 @	2442.19+	- 194.51₽	-201.76*	6.76	226.05+	280.25÷	9	3420.695	11.125
		1	5118-5119	0	91.0	2645.13+	74.35+	179.49₽	2451.05+	-222.67+	-201.99÷	4.17₽	222.21+	300.64+2			
5	1+3	桥塞	5106	0											10	3431.965	11.27
		1	5091-5092	0	92+2	2650.00+	75.07₽	178.97	2452.33+	-227.37*	-201.93+2	5.41.0	221.61+2	304.09*	11	3443.254	11.289
		1	5072-5073	0	93 ₽	2676.34~	78.96₽	176.15 @	2458.25 <i>÷</i>	-253.00÷	-200.84 🖓	5.42₽	218.44*	323.03 @			
		1	5053-5054	0	94₽	2704.48	81.41	173.94 @	2463.05+	- 280.62+	- 198.44 @	3.490	215.27@	343.70~	12	3454.451	11. 197

Perforating Interval

Well Inclination

Casing Data

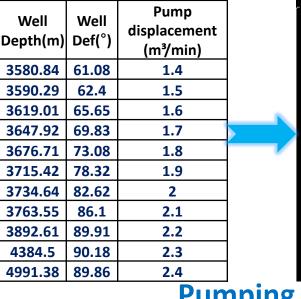


Pumping Down Simulation

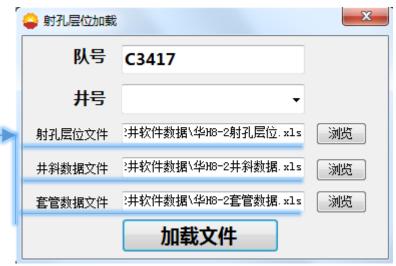
Well Condition

Perforating String

水的动力粘度 Pa.	s 0.000413	2	水的密度 k₀	g/m³ 1000		水中电	缆线密度	kg/km 23	0
管串静摩擦系数 0.3	套管内 径 0.1143		力(静摩擦) 044.18	N 泵送 2400	速度 m/h	井須 90.11	<u>라 °</u>		
管串动摩擦系数 0.25	管串总长 12.05		力(动摩擦) 705.65	N 泵送排 2.4	睢 m³/mi	n A点簿 3705.7	腹 m 13	导)	(井斜
电缆静摩擦系数 0.3 电缆动摩擦系数	管串总重量 445 管串浮力		置缆头张力 800	N 泵送 3741	É推力 № .36	水平段 1385.2	长度 m ?7	泵送	送模拟
电频和重排示数 0.25	712.77		推力计算)约	381.7	7 kg 压力损		压力 MPa	压力作 用面积
添加管串部件	外径	重里 kg	长度	间隙	偏心率 无重纲	生系数 无重纲	压差 MPa	70	 0.001452
打捞矛1	▼ 0.043	5	0.58	0.03565	0.214586	54/70	0.03313:	69. 96688	0.00273(
打捞矛2 🗙	▼ 0.073	10	0.12	0.02065	0.37046(54/70	0.03431	69, 9325	0.002035
加重 🖂	▼ 0.089	180	2.56	0.01265	0.60474(89/70	0. 10440'	69.8281	-0.0020(
CCL及配件 🛛 🖂	▼ 0.073	40	1.1	0.02065	0.37046(0	7.06997:	69. 8280 '	0.002035
射孔枪 🛛 🖂	▼ 0.089	120	4.83	0.01265	0.60474(54/70	0.06394(69. 7641(0.00086'
坐封工具 🛛 🖂	▼ 0.095	80	1.98	0.00965	0. 792746	54/70	0.09703:	69.6671(0.00060
坐封筒及桥塞 🗙	▼ 0.099	10	0.88	0.00765	1	89/70	0.235686	69. 4314:	0.00769'


Well	Well	Static friction	Dynamic friction	Pump	Pump displacement
Depth(m)	Def(°)	resistance(N)	resistance(N)	thrust(N)	(m³∕min)
3580.84	61.08	988.76	828.11	873.88	1.4
3590.29	62.4	1075.26	912.61	1070.72	1.5
3619.01	65.65	1289.78	1122.56	1287.54	1.6
3647.92	69.83	1567.99	1395.71	1524.34	1.7
3676.71	73.08	1785.23	1609.64	1781.12	1.8
3715.42	78.32	2135.23	1955.53	2057.88	1.9
3734.64	82.62	2427.81	2243.67	2354.62	2
3763.55	86.1	2673.94	2485.45	2671.33	2.1
3892.61	89.91	3014.44	2810.97	3008.03	2.2
4384.5	90.18	3369.71	3110.81	3364.7	2.3
4991.38	89.86	3747.82	3420.52	3741.36	2.4

Software Preparing


Load 3 data files

 Load Pump displacement data
Collect data of Ground System
Active the Tracking System and Voice Promoting



Pumping Rate

Data Files Loading

Collect Surface System Data

Control Pumping Down Status

Perforating Interval

Pumping Down

Visualizing

Automatic Locating

Pumping Rate

Well Trajectory &

Previous Wireline Status

Curve

Real time Wireline

Status Curves

Remote Assisting

添加对比

-〇- 井眼轨迹 -〇- 电缆速度 -〇- 管串速度

─── 电缆余量

-〇- 对比电缆速度

威202H11-5井 € 第四段 € 2017/11/11 10:56:50 €

2534.72 2680.43 2796.59

2943.59

- **Display Real-Time Remote Data**
- Analyze Pumping Down Field Data

对比管串速度

3479.57 3638.85 3813.79 3901.68

── 对比电缆余量

4047.56

4192.76

速度 m/h 余量 m

- 5,000 m/h - 50 n

- 4,000 m/h - 40 m

- 3,000 m/h - 30 m 2,535.00 25.3

- 2,000 m/h - 20 m

- 1,000 m/h - 10 m

Comparative Analysis of Curves

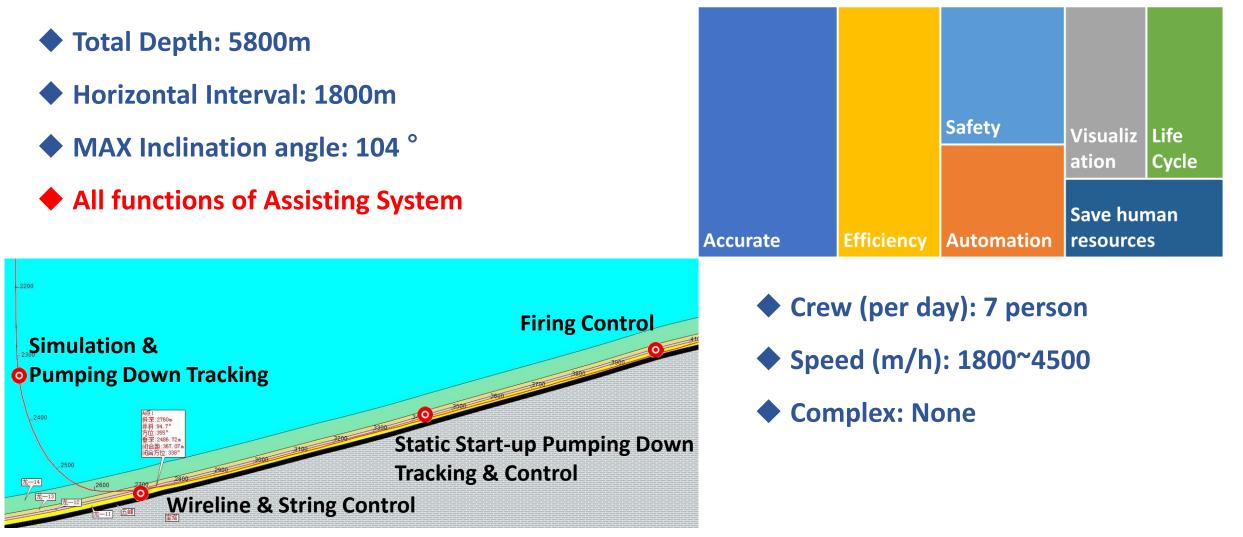
308 3146.88 234.97 3400.61

|缆余量: 31.88 m

'比电缆速度: 3020 m/ '比管串速度: 3465 m/ '比电缆余量: 23.33 m

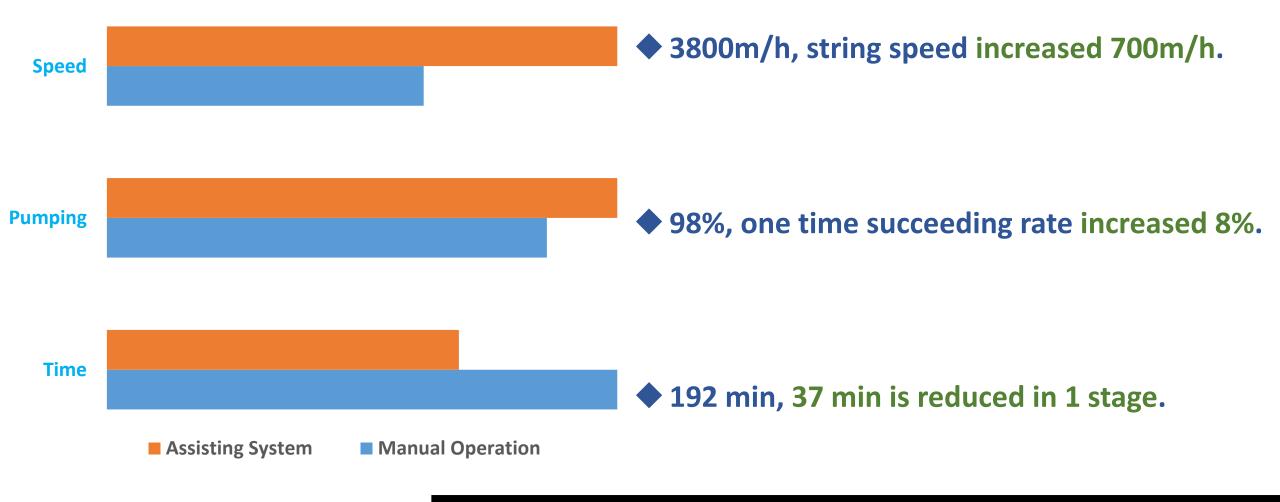
Pumping Down Data Remote Synchronization

APPLICATION



APPLICATION

W202H1X-9



Efficiency

Comparison

The accuracy of designed pumping rate reaches 95% plus.

Crew can get expert's advice real time in complex well condition.

♦ Since 2013, Plug & Gun system dropping in well accidents has reduced 90%.

Energetic Testing and Technology Developments in Section I, Improving Pumping Down Efficiency and Safety with Intelligent Assisting System

CONCLUSION

Improving Pumping Down Efficiency and Safety with Intelligent Assisting System

Using Intelligent Assisting System can promote efficiency and ensure downhole string safety.

Using Remote System can get expert's advice real time in complex operation. Optimizing Pumping Procedure according to the previous stage.

Replacing manual operation with software in Pump Down Perforating can reduce the number of people in crew.

QUESTIONS? THANK YOU

2019 NAPS North America Perforating Symposium

AND SAFETY FORUM

DALLAS - FORT WORTH. AUGUST 5-6, 2019.

2019-NAPS-XX

AUTHORS: Zhao Xindi, Ma Ziqiang, Zhang Qingbin China National Petroleum Corporation.

