OPTIMIZING RIG TIME
WITH LONG, LARGE DIAMETER GUN STRINGS
RUN ON WIRELINE CABLE
FOR THE FIRST TIME IN THE UAE

MENAPS-2016-22

AUTHORS: Takahiro Toki, Khalid Al Wahedi, Mhammed Benygzer, Youssef Kasem, Rudra Narayan Singh, ADMA-OPCO
Neil Sookram, Michael Cocagne, Maria Eugenia Yanez Banda, Daniel Hunter Klein, Joris Wagner, Schlumberger
Introduction

- Injection wells to dispose of cuttings from development wells in the field
- Target injection rate of 5 bpm
- Total injection volume of 2 MMbbls
Perforation Gun Considerations

To reduce plugging the perforations in the injectors with the cuttings residues, the following was required from the guns:

- Large hole diameter in the casing
- Deep penetration in the formation
- Large area open to flow

Perforating operation could be done:

- Rigless, through 5-1/2” tubing
- Rig on site, no tubing string
Perforation Gun Selection

- Larger 7 inch, 12 SPF gun selected
- Maximizes flow area to reduce risk of plugging
- Will reduce risk or frequency of future intervention operations to clean up perforations
- Rig needed to run tubing string after perforating

<table>
<thead>
<tr>
<th>Gun System</th>
<th>Gun OD (in)</th>
<th>SPF</th>
<th>Average Casing Entry Hole Diameter (in)</th>
<th>Average Formation Penetration (in)</th>
<th>Area Open to Flow (in²ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>12</td>
<td>0.30</td>
<td>12.42</td>
<td>0.89</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>12</td>
<td>0.45</td>
<td>18.02</td>
<td>1.91</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>0.35</td>
<td>21.34</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>6</td>
<td>0.30</td>
<td>13.93</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>5</td>
<td>0.52</td>
<td>1.83</td>
<td>1.28</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td>6</td>
<td>0.31</td>
<td>15.21</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Rig Time Efficiency

- 30 feet of interval to be perforated
- Gun string weight of about 2200 lbs
- First well drilled by this new rig and relatively inexperienced rig crew
- Operational safety considerations
- TCP or Wireline conveyance options
- Single run on wireline to be considered
Challenges of Heavy Gun String on Cable

- Weight of guns and cable strength
- Wellbore dynamic shock on detonation
- Tension and compression effects on cable weak point
- Detonation shock
- Effects on downhole electronics
Wellbore Dynamic Shock Simulation

- Simulated for 30 ft of 7” gun on wireline, no shock absorber
- Maximum 3,500 lbs of additional tension on weak point after detonation
- 6 inches of downward travel of gun string
- Unknown formation properties so extra safety margin required
Perforating Shock Mitigation

- Strong 7-conductor, 0.48” diameter wireline cable selected
 - Breaking strength > 30,000 lbs

- Special Flexible weak point
 - Safety margin > 150% over the maximum tension modeled by the shock simulator

- The weak point rating well within the safety rating for this strong cable

- Shock absorber added to string
Wellbore Dynamic Shock Simulation

- With shock absorber
- Maximum 2,800 lbs of additional tension on weak point after detonation
- Slightly more downward travel of gun string at about 7 inches
- Electronics will be protected by the shock absorber
Radio Safe Frequency Detonator

- Special Radio Frequency (RF) Safe Detonator used
- Heightened safety on wellsite activities during explosive operations
- Many routine or critical wellsite operations like radar, radio, cellular communications and welding in appropriate locations can often continue
- Increased productivity and reduced non-productive time (NPT)
- Especially important to maintain safety and efficiency on this particular site on the artificial island with many other operations going on, not involving the CRI well
Rig Operation

- Heavy gun weight did not permit making up guns on catwalk
- Gun string prepared on the ground alongside the catwalk with crane
- Crane used to lift complete string horizontally to rig floor
- Wireline cable then used to take weight of gun slowly until vertical in the derrick
- Good communication essential throughout the operation
- Same procedure followed to bring down gun string after perforating
Operational Time Saving

- Estimated Time of TCP Gun: 24.5 hours
- CRI Well No.1 Gun on wireline -2 runs: 14 hours
- CRI Well No.2 Gun on wireline -1 run: 9.5 hours

- Reduced 43%
- Reduced 61%
Conclusions

- Advances in cable technology and auxiliary equipment such as flexible weak points and shock absorbers make shooting longer and heavier guns strings feasible
- Operation conducted safely in a single run
- Decreased rig operation time by 61%
- Achieved the objective for the well
- Successful completion on first attempt in the UAE
- Plenty of safety margin and longer strings can be handled in future
Acknowledgements

The author & co-authors would like to thank Schlumberger and ADMA OPCO management for support during the execution of this operation.

Special thanks must also be given to Hassam Ibrahim Khalil.
MENAPS 2016
Middle East and North Africa Perforating Symposium
MUSCAT, OMAN

QUESTIONS?
THANK YOU!

OPTIMIZING RIG TIME WITH LONG, LARGE DIAMETER GUN STRINGS RUN ON WIRELINE CABLE FOR THE FIRST TIME IN THE UAE