Novel Coiled Tubing Perforation Approach Avoids Overflushing in Multistage Hydraulic Fracturing Operations in a Horizontal Well
Content

- Introduction
- Conveyance Options
- Fibre-optic based CT-Selective Perforating System
- Case Study
- Conclusion
Horizontal Wells Challenges in Tight Formation

- Understand the subsurface variability. It takes dozens of wells to understand if a play has potential and what the sweet spots are.
- Understand the causes of subsurface variability via diagnostics
- Determine the big levers that are controlling production
 1. Horizontal Well Length
 2. Type of Hydraulic Fractures (longitudinal or Transverse)
 3. Number of fractures
 4. Effective fracture height and length
 5. Well Spacing
- May need between 3 and 10 wells with good controls
- All frac models simulate frac geometry but:
 1. Can not provide realistic frac geometry
 2. Have problems with production estimation

November 13, 2016

MENAPS 16-9
Horizontal well Industry Trends in Tight Formation

- The trend is towards longer wells and shorter stage spacing.
- Industry is trending towards (150-300 ft) 50 to 100 m stage spacing. For example in the Bakken, they are drilling 3000 m wells and with 30-40 stages and 120 individual perforation clusters.
- Transverse Fracs are more recommended than longitudinal fracs.
- 4 time the well ID is the recommended perforation length for tight formation.
- Time efficient successful completions requires Overflushing.
- Overflushing can be detrimental to productivity. How to avoid.
Oman Horizontal Well Case Study

- Deep sandstone, gas well at 200-400 Bar and 138 degC.
- 4.5” monobore with multiple-stages cross-linked gel fracturing.
- Heterogeneous formation and multiple 0.9m guns per stage, shooting on same spot require accurate realtime correlation.
Heterogeneous Formation

Novel Coiled Tubing Perforation Approach Avoids Overflushing in Multistage Hydraulic Fracturing Operations in a Horizontal Well
Conveyance Option-1: Pump-down

- Globally popular: Relatively cheaper and efficient.
- Requires overflush right after pumping main fracturing.
- Then, more fluid into fracture during pump-down operations.
- Real-time correlation.
- Multiple guns with addressable-switches
Conveyance Option-1: Pump-down

- Globally popular: Relatively cheaper and efficient.
- Requires overflush right after pumping main fracturing.
- Then, more fluid into fracture during pump-down operations.
- Real-time correlation.
- Multiple guns with addressable-switches

<table>
<thead>
<tr>
<th></th>
<th>Pump-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflush required</td>
<td>Yes</td>
</tr>
<tr>
<td>Convey plug and multiple guns in tandem</td>
<td>Yes</td>
</tr>
<tr>
<td>Higher pumping rate that enables hole cleanout</td>
<td>n/a</td>
</tr>
<tr>
<td>Real time correlation for accurate positioning</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conveyance Option-2: Tractor

- Needs cleaner wellbore.
- Overflush and/or with CT cleanout
- Real-time correlation.
- Multiple guns with addressable-switches

<table>
<thead>
<tr>
<th></th>
<th>Pump-down</th>
<th>Tractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflush required</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Convey plug and multiple guns in tandem</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Higher pumping rate that enables hole cleanout</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Real-time correlation for accurate positioning</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conveyance Option-3: Conventional Coiled Tubing

- More robust with some proppant leftover in wellbore. Greater pushing force and circulation while conveying guns.
- CT at wellsite can perform hole cleanout trip.
- Poor depth accuracy. Additional run for correlation may also be needed.
- Limited number of guns per run.

<table>
<thead>
<tr>
<th></th>
<th>Pump-down</th>
<th>Tractor</th>
<th>Conventional CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflush required</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Convey plug and multiple guns in tandem</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Higher pumping rate that enables hole cleanout</td>
<td>n/a</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>Real time correlation for accurate positioning</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Conveyance Option-4: Coiled Tubing with Electric Wireline

- More robust with some proppant leftover in wellbore. Greater pushing force and limited circulation while conveying guns
- Real-time correlation.
- Multiple guns with addressable-switches
- Limited pumping rate and milling capability. Efficiency affected when swapping to conventional coil.

<table>
<thead>
<tr>
<th></th>
<th>Pump-down</th>
<th>Tractor</th>
<th>Conventional CT</th>
<th>CT with wireline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflush required</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Convey plug and multiple guns in tandem</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Higher pumping rate that enables hole cleanout</td>
<td>n/a</td>
<td>n/a</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Real time correlation for accurate positioning</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Fibre Optic Based Coiled Tubing Selective Perforating

- CT with fibre-optics
- Optic based selective firing head system
- Better pumping rate at 2 bbl/min and milling capability.
- Better efficiency and avoids overflushing

<table>
<thead>
<tr>
<th></th>
<th>Pump-down</th>
<th>Tractor</th>
<th>Conventional CT</th>
<th>CT with wireline</th>
<th>CT with fibre-optic and selective perforating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflush required</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Convey plug and multiple guns in tandem</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Higher pumping rate that enables hole cleanout</td>
<td>n/a</td>
<td>n/a</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Real time correlation for accurate positioning</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Optic Based Selective Perforating System

- Surface to downhole communication/ control using fibre optics
- Downhole tool shoots radio-frequency (RF) safe detonators using battery.
- Realtime GR-CCL correlation. Realtime firing confirmation from pressure/temperature/accelerometer sensors.
- Multiple guns sequential firing, with each gun equipped with an addressable switch.
- Unlike other CT perforating systems, this can also be used in wells that cannot accept fluid pumping.
Optic Based Selective Perforating System

Novel Coiled Tubing Perforation Approach Avoids Overflushing in Multistage Hydraulic Fracturing Operations in a Horizontal Well

MENAPS 16
Oman Horizontal Well Case Study

- Deep sandstone, gas well at 200-400 Bar and 138 degC.
- 4.5” monobore with multiple-stages cross-linked gel fracturing.
- Heterogenous formation and multiple 0.9m guns per stage, shooting on same spot require accurate realtime correlation.
- Fibre-optic based system selected to:
 - Avoid overflushing
 - Multiple guns accurate correlation
 - Efficient hole cleanout
Oman Horizontal Well Case Study

- Operation performed with the system involving:
 - Plug setting
Oman Horizontal Well Case Study

- Operation performed with the system involving:
 - Plug setting
 - Perforating multiple guns
Oman Horizontal Well Case Study

- Operation performed with the system involving:
 - Plug setting
 - Perforating multiple guns
 - Realtime GR-CCL correlation
Oman Horizontal Well Case Study

- Operation performed with the system involving:
 - Plug setting
 - Perforating multiple guns
 - Realtime GR-CCL correlation
 - Perforation confirmation from the switches and Pressure/Temperature sensors
Oman Horizontal Well Case Study

- Operation performed with the system involving:
 - Plug setting
 - Perforating multiple guns
 - Injectivity and pressure decline tests
 - Hole cleanout
 - Plug milling
Conclusion

- Successful multiple stages operations with accurate correlations of multiple short guns.

<table>
<thead>
<tr>
<th>Run</th>
<th>Perforation Guns</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>Three sets of 0.9-m guns</td>
<td>All three guns fired sequentially successfully</td>
</tr>
<tr>
<td>Run 2</td>
<td>Three sets of 0.9-m guns</td>
<td>All three guns fired sequentially successfully</td>
</tr>
<tr>
<td>Run 3</td>
<td>Three sets of 0.9-m guns</td>
<td>All three guns fired sequentially successfully</td>
</tr>
<tr>
<td>Run 4</td>
<td>Three sets of 0.9-m guns</td>
<td>Only gun-2 fired and could not fire gun-1 and gun-3 due to tool communication error. Repeat of two guns performed.</td>
</tr>
<tr>
<td>Run 5a</td>
<td>Three sets of 0.9-m guns</td>
<td>All three guns fired sequentially successfully</td>
</tr>
<tr>
<td>Run 5b</td>
<td>One set of 3-m gun</td>
<td>Gun fired successfully after tool communication error while running in hole.</td>
</tr>
<tr>
<td>Run 6</td>
<td>Three sets of 0.9-m guns</td>
<td>All three guns fired sequentially successfully</td>
</tr>
</tbody>
</table>

- Overflushing avoided.
- Hole cleaning and plug milling with the same coil meet some of the expectation due to pumping rate limitation 2 bpm maximum rate on a 2” CTU
- Software and electronics communication was an issue that cause to pull out of hole several times
- Possible future expansion scope of application to include distributed temperature sensing (DTS)
QUESTIONS?

THANK YOU!