Perforation Design for Increased FRAC Efficiencies in Shale Formations
AGENDA/INTRODUCTION

- Why demand an optimized system
- What are the benefits
- How to develop a perforating system
- Certification testing
- Results
- Case study
- Conclusion
Where can Efficiencies Grow?

Smarter Perforating leads to better Fracturing

- Based on a typical well breakdown a bulk majority of cost is in the hydraulic fracturing operation.
- Perforating by itself comprises 2-3% of costs to complete a well.
- The perforating event is directly responsible for the efficiency of the hydraulic fracturing at 45% of well costs.
- Imagine being able to lower the 45% of well costs by being more selective about the 2-3% of perforating costs.

Graphic source: Weatherford, Shale Gas & Tight Oil Presentation, 2012
Why Perforation Design is Important

System Performance

- Perforating systems offer unique opportunities due to interchangeability of components
- A perforating charge is designed and optimized for specific systems and well scenarios
- A conventional perforating charge may provide insufficient performance for hydraulic fracturing operations

- By selecting a FRAC optimized perforating charge the results can be far more productive for the hydraulic fracturing operation
- These FRAC optimized perforators are designed to give a consistent through hole in the casing, at all phasings, regardless of gun orientation
Performance Criteria

Ideal Performance Demands from Operating Companies

- Customer have a desire to select from a variety of charges and gun systems
- Require consistent entry hole around circumference of casing
 - Consistent entry hole equalizes perforation friction (ΔP_{perf})
 - By reducing variability in hole size the FRAC should breakdown 100% of perforations versus conventional where 30-60% of perforations don’t accept the hydraulic fracturing
- Achieve consistent penetration and consistent hole size
- Be able to give superior performance regardless of centralization and/or orientation
Testing and Certification

Extensive Development for Consistency

- Testing unique and specialized perforating systems requires more than the standard API tests

- Important to test numerous gun systems to develop a true average of performance
 - 21 gram charge tested in 3.125” and 3.375” perforating guns
 - 3.125” and 3.375” guns tested in 4.5”- 5.5” casing as well as L80-P110
 - 2.75” system tested in 4.5”- 5.5” casing as well as L80-P110

- Numerous test series to verify consistent hole size and penetration performance in the varying gun systems, casing sizes, and target mediums
Testing and Certification

- Testing full systems under hydrostatic pressure to verify wellbore pressure will not negatively effect performance
 - Full system gun test with wellbore pressure of ~5500psi
 - Gun system decentralized in wellbore casing
 - Concrete confinement around exterior of casing to simulate cement sheath

- Test performance in stressed rock conditions to verify consistency in design and performance

- API RP-19B Section 2
 - Berea Sandstone Penetration
 - 2.75” charge – 10.4”
 - 3.125” charge – 9.63”
 - Eagleford Shale
Deliverable Results

Equalized ΔP_{perf}

Conventional SDP

FRAC Optimized

$$\Delta P_{\text{perf}} = \frac{0.237 \rho Q^2}{D^4 C^2}$$

Where:
- $Q = 2 \text{ BPM/perf}$
- $C = 0.7$
- $\rho = 8.33 \text{ ppg}$
Case Study

WolfCamp Play

<table>
<thead>
<tr>
<th></th>
<th>Effective Lateral Length, ft</th>
<th># of Stages</th>
<th>Total Proppant per foot</th>
<th>Average Break Down Pressure, psi</th>
<th>Max Treatment Pressure, psi</th>
<th>Average Pump Rate, bbl/min</th>
<th>Average Treatment Pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitor ‘A'</td>
<td>7477</td>
<td>41</td>
<td>1804.5</td>
<td>4044</td>
<td>6916</td>
<td>87</td>
<td>5886</td>
</tr>
<tr>
<td>Competitor ‘B'</td>
<td>7155</td>
<td>48</td>
<td>2033</td>
<td>3821</td>
<td>7084.5</td>
<td>88</td>
<td>5932</td>
</tr>
<tr>
<td>% Improvement</td>
<td></td>
<td>15.7%</td>
<td>11.9%</td>
<td>-5.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Competitor ‘B’ was able to complete almost 16% more stages than Competitor ‘A’
- Competitor ‘B’ was able to place 12% more proppant per foot, ~230 lbs per foot
- Competitor ‘B’ was able to maintain pump rates and treatment pressures while reducing the breakdown pressure by nearly 6%
Case Study
Wolfcamp Play

- Well Productivity showed:
 - 15% higher I.P.’s
 - 5-15% higher estimated E.U.R.
 - Notably higher near wellbore permeability
 - Notably lower skin factor
 - No Screen Outs
Conclusion

- Based on all the testing and data presented so far
 - The perforating system selected and use of perforating charges designed specifically for better hydraulic fracturing operations has resulted in better efficiencies for Shale formations

- Performance of perforating system depends on:
 - Consistency of the charge performance
 - Both consistent entry hole and penetration
 - Clean perforation tunnels that are free from debris

- Technology has been designed into the perforating charge
 - Does not require special running hardware
 - Such as centralizers or orientating devices
 - Allows interchangeability within multiple size perforating systems
Perforation Design for Increased FRAC Efficiencies in Shale Formations