

SLAP 16-8

AUTHORS: Martín Manzano, Miguel Angel Veronesi, Daniel Franco, Martin Schoener Scott, Halliburton

Oct 18th, 19th & 20th , 2016

© 2016 Halliburton. All rights reserved.

HALLIBURTON

AGENDA

- Introduction
- TCP Multi-cluster & Coiled Tubing Objective
- Multi-cluster sequence TCP Step by Step
- Case History: Well conditions
- Case History: Solution TCP
- Case History: BHA design Coiled Tubing Challenge
- Case History: Solution Coiled Tubing
- Case History: Operational description & Outcomes
- Conclusion

SLAP-16-8

INTRODUCTION

- Unconventional completions optimization is important for shale/tight field development to provide the industry with cost-effective solutions.
- Several technologies are available to create the toe perforations (1st stage perforations) required to enable using the pump-down technique.
- In Argentina, several unconventional completions methods are available, such as fracturing sleeves, sand jetting, tractor conveyed perforating, etc.
- However, complex geometry or collapsed wells requires a more reliable completion technic.

TCP Multi-cluster & Coiled Tubing

Objective

- A single tubing conveyed perforating (TCP) run can make a Toe Perforating possible, not only accomplishing cluster distribution to optimize the fracturing design but also allowing complex-geometry well completions for which coiled tubing (CT) is the only conveyance option.
 - Reduce Breakdown pressure of 1st stage.
 - Avoid pre-frac treatment.
 - Flexible perforating design for clean perforation tunnel.
 - Provide independent perforating of selected zones.
 - Leave the stage ready for hydraulic stimulation eliminating additional Pump Down run.
 - A safe and reliable system for Toe perforating

SLAP-16-8

Multi-cluster sequence

SLAP-16-8

Well conditions - Objective

- Operator requested to perform Toe perforation (1 gun)
- 2000mts Horizontal well
- TVD 3100 mts
- MD 5000 mts
- No Initial Perforation to perform Pump Down.
- No tractor in country.
- Shale Formation (Vaca Muerta)

Solution - TCP

TCP Multi-cluster with 4 guns

- 1 ft of effective perforating length, each gun
- 2-3/4" Gun System
- Deep penetration Charges
- 6 SPF, phase 60°, RDX
- BHA Length 11.4 m
- Distance between clusters ~ 20 mts

Element	Description	
Firing Head	Pressure actuated, including delay fuse of 6'.	
Delay Fuse	Time delay element that gives 6' for gun positioning.	

Item	I.D.	OD	Longth	Depth (mKB)
Description	1.D.	00	Length	Бериі (ШКВ)
Flapper	25.4mm	73mm	0.00	4871.8
	25.4mm	73mm		4871.8
CT Coil Disconnect			0.00	
Crossover 2,3/8 Box PAC-2,3/4 Acme SOLID		73.00	0.13	4871.93
Gun Blank top shot	N/A	72.00	0.86	4872.79
Gun Load	N/A	72.00	0.28	4873.07
Gun Blank Botton	N/A	72.00	0.23	4873.3
Dual PAI	N/A	72.00	0.21	4873.51
Delay Element	N/A	63.00	0.33	4873.84
Crossover 2,3/8 Box Acme-2,1/2 Acme Box	N/A	72.00	0.40	4874.24
Gun Blank top shot	N/A	72.00	0.86	4875.1
Gun Load	N/A	72.00	0.28	4875.38
TCP Gun Blank Botton Dual PAL	N/A	72.00	0.23	4875.61
Dual PAI	N/A	72.00	0.21	4875.82
Delay Element	N/A	63.00	0.33	4876.15
Crossover 2.3/8 Box Acme-2.1/2 Acme Box		72.00	0.40	4876.55
Gun Blank top shot	N/A	72.00	0.86	4877.41
Gun Load	N/A	72.00	0.28	4877.69
Gun Blank Botton	N/A	72.00	0.23	4877.92
Dual PA	N/A	72.00	0.21	4878.13
Delay Element	N/A	63.00	0.33	4878.46
Crossover 2.3/8 Box Acme-2.1/2 Acme Box		72.00	0.40	4878.86
Gun Blank top shot	N/A	72.00	0.86	4879.72
Gun Load	N/A	72.00	0.28	4880
Gun Blank Botton	N/A	72.00	0.23	4880.23
Dual PA	N/A	72.00	0.21	4880.44
TDF	N/A	63.00	0.51	4880.95
Plug Vent	N/A	63.00	0.13	4881.08

SLAP-16-8

BHA design Coiled Tubing - Challenge

- Achieve well depth with a no flowing tool.
- LockUp following simulation results

FC	Lock Up Depth	
0.30	4793 mts	
0.29	4886 mts	
0.28	No LockUp	

SLAP-16-8

BHA design Coiled Tubing - Challenge

- Based on the simulations and experience, it is necessary to perform the job with a vibrating tool and a circulation port that allows pumping through.
- Pump friction reducer.
- Following these conditions, we can consider a FC of 0.28 in order to achieve the bottom of the well.

Depth	4930 m		
Variable	Value	Unit	
Max Weight RIH	24698	Lbf	
Max Weight POOH	41983	Lbf	
Lock Up	N/A	Lbf	
Max Pick Up at Depth	17124	Lbf	
Max Surface tension	90291	Lbf	
Max set down on end	-150	Lbf	
CT inner pressure	1486	Psi	
Annular velocity	190(4.5")/65(7")	Ft/min	

SLAP-16-8

Solution – Coiled Tubing

D

Operational Description & Outcomes

- CT reaches Max Depth to correlate with Collar.
- Detonation sequence initiated by applying 5000 psi over Firing head (pressure actuated)
- Gun detonation not detected at surface.
- Guns positioning performed by monitoring time and delay sequence.
- Coiled Tubing POOH and Gun detonation confirmed at surface.

Hydraulic treatment executed avoiding the additional Wireline intervention for Pump-Down run.

SLAP-16-8

CONCLUSION

- Cluster distribution (for Toe Perforating) executed according to the frac plan.
- Improved perforating design to reduce the need of pumping additional treatments.
 - Increase N° of shots/guns
 - Use of different shaped charges technology to improve tunnel clean up.
- Has been proven effective and safe for toe perforating.
 - This is a feasible option for complex-geometry well.
 - Early production of collapsed wells.
- Operator saving and additional Perforating run to complete the stage design.
- Execute the entire completion program replacing other perforating technics.
 - Plug & Perforating run deployed by Coiled Tubing.

SLAP-16-8

2016 LATIN AMERICA PERFORATING SYMPOSIUM, BUENOS AIRES

QUESTIONS? THANK YOU!

SLAP-16-8