

2016 International Perforating Symposium (IPS)

IPS-16-39

Plastic Collapse Behaviors of Perforating Guns with Scallops

Haifeng Zhao, David Iblings, Aleksey Barykin, and Mohamed Mehdi Schlumberger May 10, 2016, Galveston, TX

Outline

- I. Introduction to Perforating Gun and Conveyance Systems
- II. Ultimate Collapse Strength for Recessed Tubulars
- III. Finite Element Analysis (FEA) and Test Validation
- IV. Conclusions and Future Work

I. Introduction to Perforating Gun and Conveyance Systems

Perforating Gun and Conveyance Systems

Wireline

Slickline

Tubing-Conveyed Perforating (TCP): Completions and Drillstem testing

Coiled Tubing

Density and Phasing

Density

Phasing

360°/ 6 =60° phasing

Number of shots per foot (spf)

Distance (in degrees) between charges

II. Ultimate Collapse Strength for Recessed Tubulars

Review: Collapse Strength of a Slick Pipe

Lamé Thick Wall Yield Collapse Formula (Yield at Pipe ID)

Open Ends
$$P_{Lc} = \sigma_y \frac{D_o^2 - D_i^2}{2D_o^2}$$
 $D_o = D$ $P_{Lc} = 2\sigma_y \cdot \frac{(k-1)}{k^2}$ Oosed Ends $P_{Lc} = \sigma_y \frac{D_o^2 - D_i^2}{\sqrt{3}D_o^2}$ $k = D/t$ $P_{Lc} = 2.31 \cdot \sigma_y \cdot \frac{(k-1)}{k^2}$

API Bulletin 5C3

	Yield Collapse	Plastic Collapse	Transition Collapse	Eastic Collapse
P _Y	$\sigma_s = 2\sigma_y \cdot \frac{(k-1)}{k^2}$	$P_P = \sigma_y \left[\frac{A}{k} - B\right] - C$	$P_T = \sigma_y \left[\frac{F}{k} - G \right]$	$P_{TE} = \frac{2E}{1 - v^2} \cdot \frac{1}{k(k - 1)^2}$

Tamano <u>Ultimate</u> Collapse Equation (SPE 48331)

$$P_{T} = \frac{1}{2} (P_{E} + P_{Y}) - \sqrt{\frac{1}{4} (P_{E} - P_{Y})^{2} + P_{E} P_{Y} H} \qquad \begin{cases} P_{E} = 1.08 \times \frac{2E}{1 - \nu^{2}} \cdot \frac{1}{k(k - 1)^{2}} \\ P_{Y} = 2\sigma_{y} \cdot \frac{k - 1}{k^{2}} \left[1 + \frac{1.5}{k - 1} \right] \\ H = 0.071 \cdot u(\%) + 0.0022 \cdot e(\%) - 0.18 \cdot \frac{\sigma_{r}}{\sigma_{y}} \end{cases}$$

Ultimate Collapse Strength of Scalloped Gun Carriers Definition

$$P_c = \mu \cdot P_T$$

 μ – Collapse strength reduction factor due to scallops P_T – Tamano ultimate collapse strength equation

Reference: Collapse Strength of Perforated Casing

Reference: SPE 51188

μ for Scalloped Gun Carriers

III. FEA and Test Validation

Modeling Approach

- Nonlinear post-buckling analysis using Riks method based on arc length scheme in ABAQUS
- Material model: isotropic hardening plasticity with bilinear, power law or measured stress-strain curve
- Boundary conditions: external pressure prescribed on the exterior surface with end connection supported

Collapse Criteria

When the collapse pressure is reached, the structure will deform dramatically and lose pressure-bearing capacity.

Local Yielding

Physical Understanding of Collapse (Post-buckling) Collapse pressure definition

Example: Collapse Animation of 15SPF 5 FT

Deformation Scale Factor = 1

Test Validation of FEA

Description	Test Temp [Deg F]	D/t	Tested Collapse Pressure [psi]	FEA P _{collapse} [psi]	Difference with Tests [%]
Test 1	368	9.4	32,250	30,660	-4.9%
Test 2	318	10.7	22,500	22,831	+1.5%
Test 3	250	10.7	24,263	23,651	-2.5%
Test 4	250	14.0	18,329	18,633	+1.7%
Test 5	400	11.6	22,745	23,311	+2.4%

Note:

- Detailed geometric, product name and material parameters are confidential.
- Stress/strain data utilized in the FEA analyses is full measured data from a test

Case Study: μ_2 Expression

Case Study: Parametric Study of 7-in OD, 5-ft Length Carrier

Wall Thickness, t

D [in]	t [in]	θ [deg]	S [in]	w [in]	d [in]
7	0.5 0.7 1.0	60	4.0	0.2	1.0

Longitudinal Spacing, S

D [in]	t [in]	θ [deg]	S [in]	h [in]	d [in]
			4.0		
			6.0		
7	0.7	60	8.0	0.5	1.0
		12.0			
			16.0		

Scallop Diameter, d

D [in]	t [in]	θ [deg]	S [in]	h [in]	d [in]
7	0.7	60	4.0	0.5	0.7 1.0 1.3

Angular Phasing, θ

D [in]	t [in]	θ [deg]	S [in]	h [in]	d [in]
7	0.7	25.7 36 45 60 90	4.0	0.5	1.0

Scallop Depth, h

D [in]	t [in]	θ [deg]	S [in]	h [in]	d [in]
7	0.7	60	4.0	0.3 0.4 0.5 0.6	1.0

Definition of "true" μ							
	$\mu_{\rm FEA} = P_{\rm scallop}^{\rm FEA} / P_{\rm pipe}^{\rm FEA}$						
Dimension of slick pipes							
	D [in] t [in]						
	7	0.5 0.7 1.0					

$$\mu_{1} = 1 - \frac{d}{S} \cdot \frac{h}{t} \qquad \mu_{2} = 1 - 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{3} = 1 - 3 \cdot 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{FEA} = P_{\text{scallop}}^{FEA} / P_{\text{pipe}}^{FEA}$$

[1] D/t vs. μ

Collapse strength reduction factor μ is linearly proportional to D/t ratio.

$$\mu_{1} = 1 - \frac{d}{S} \cdot \frac{h}{t} \qquad \mu_{2} = 1 - 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{3} = 1 - 3 \cdot 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{FEA} = P_{\text{scallop}}^{FEA} / P_{\text{pipe}}^{FEA}$$

[2] θ vs. μ

Collapse strength reduction factor μ is inversely proportional to θ .

$$\mu_{1} = 1 - \frac{d}{S} \cdot \frac{h}{t} \qquad \mu_{2} = 1 - 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{3} = 1 - 3 \cdot 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{FEA} = P_{\text{scallop}}^{FEA} / P_{\text{pipe}}^{FEA}$$

[3] *S* **vs.** *μ*

$$\mu_{1} = 1 - \frac{d}{S} \cdot \frac{h}{t} \qquad \mu_{2} = 1 - 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{3} = 1 - 3 \cdot 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{FEA} = P_{\text{scallop}}^{FEA} / P_{\text{pipe}}^{FEA}$$

[4] *h* vs. μ

Collapse strength reduction factor μ is "linearly" proportional to *h*.

$$\mu_{1} = 1 - \frac{d}{S} \cdot \frac{h}{t} \qquad \mu_{2} = 1 - 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{3} = 1 - 3 \cdot 90 \cdot \frac{d^{2}}{SD\theta} \cdot \frac{h}{t} \qquad \mu_{FEA} = P_{\text{scallop}}^{FEA} / P_{\text{pipe}}^{FEA}$$

[5] *d* vs. μ

IV. Conclusions and Future Work

Conclusions and Future Work

- An analytical collapse strength equation based on Tamano formula was proposed for scalloped perforating guns.
- The proposed equation was thoroughly validated with the aid of FEA in a multivariable parametric space – an analysis hardly affordable with the use of physical tests.
- An FEA method used to validate the proposed equation showed strong agreement with the test data giving collapse predictions for scalloped tubulars within 5% of the test results.
- The method applied to scalloped perforating guns can also be used for any tubulars with patterned cutouts or recesses, such as prepacked sand screens, perforated or slotted liners, etc.

IPS-16-39 Questions?

Publications

- Zhao, H., Iblings, D., Barykin, A., and Mehdi, M., 2015, Plastic Collapse Behaviors of Tubulars with Recess Patterns, Proceedings of ASME International Mechanical Engineering Congress & Exposition, IMECE2015-50204, Houston, TX.
- Zhao, H., Iblings, D., Barykin, A., and Mehdi, M., 2016, Plastic Collapse Behaviors of Tubulars with Recess Patterns, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, Accepted.