

2016 INTERNATIONAL PERFORATING SYMPOSIUM GALVESTON

A NEW METHOD FOR PREDICTING PERFORATION ENTRANCE HOLE DIAMETER

IPS 16-37

AUTHORS: David Cuthill, John Hardesty, & Jarrod Pearson; GEODynamics, Inc.

INTRODUCTION

- An accurate measurement of perforation entrance hole diameter is important when planning and executing a hydraulic fracturing operation
- Entrance hole diameter variability with phasing must be known when:
 - Selecting the proppant diameter in order to reduce bridging;
 - Estimating perforation friction, especially in limited entry applications; and
 - Using ball sealers.
- Various charges shot at a number of clearances in order to develop EHD correlation
- API 19B Section 1 data (or equivalent) used with the forthcoming Section 7 testing the method can be further refined

ENTRANCE HOLE VARIATION WITH CLEARANCE

- In a decentralized configuration the clearance varies around the circumference and as a result the entrance hole diameter varies (sometimes significantly)
- The variation is recorded in the API 19B Section 1 test and the resulting data can be used in situations where the same configuration will be used in a well
- But what about the situation where the same charge and carrier will be shot in a different sized casing?

TEST CONFIGURATION

- Selection of charges shot in a test jig all under the same configuration and casing dimension
- Jig simulated charge stand-off, scallop, clearance, and casing
- Used a segment of casing rather than flat plate
- Each charge shot at clearances ranging from 0 – 3 inches

DATA GATHERING

- All entrance hole diameters where normalized to the EHD at a consistent clearance
- Plot the clearance versus the normalized EHD (Factor) and develop correlation from data
- Analysis done for both DP and SBH charges

ANALYSIS

- Analysis of the data resulted in the development of a number of "type" curves
- Certain charges exhibit similar variations in EHD with clearance

ANALYSIS

- Analysis of the data resulted in the development of a number of "type" curves
- Certain charges exhibit similar variations in EHD with clearance

ANALYSIS

- Analysis of the data resulted in the development of a number of "type" curves
- Certain charges exhibit similar variations in EHD with clearance

APPLYING THE CORRELATION

- Optimally need data for a specific charge at a few clearances as is available on an API RP19B, API RP43F, or from a QC datasheet
- Determine which correlation is applicable by testing the charge data against correlations
 - Use the correlation resulting in the least amount of error/deviation

Service Company					Explosive Weight 23 gm,				HMX powder, Case Material STEE			
Gun OD & Trade Na	D & Trade Na 3-3/8" EXPENDABLE, 6 SPF 60°				Max. Temp, F_	400	1 hr	3 hr	24 hr	100 hr		hr
Charge Name					Maximum Pres	sure Rating	22,700	psi, Carrie	r Material	ST	EEL	
Manufacturer Charge Part No. Date of Manufacture			5/4/2007	_	Shot Density			6				shots/ft
Gun Type SCALLOPED GUN (RETRIEVABLE, EXPENDABLE HOLLOW STEEL CA			CARRIER)	Recommended Minimum ID for Running				3.8				in.
Phasing Tested 60 degrees, Firing Order X Top down, X		Bottom up		Available Firing	Mode	Х	Selective,		х		Simultaneous.	
Debris Description SN	MALL STEEL PARTICLES MAY EXI	CARRIER		_	Debris Weight	N/A		gm/charge, De	bris	N/A		in.s/charge
Remarks GUNS MAY BE TUB	ING OR WIRELINE CONVEYED											
			SECTION	1 - CONCR	ETE TARGET							
asing Data 4-1/2 OD, Weight 11.6 lb/ft,			L-	80	API Grade, Date of Concre			6/22/2007				
Target Data 120	OD, Briquet Compressive Str	engtn _	7152	psi, Ag	e of Larget				28			days
Shot No.		No.1	No 2	No 3	No.4	No 5	No.6	No 7	No.8	No.9	No. 10	
Clearence in		0.00	0.14	0.45	0.63	0.45	0.14	0.00	0.14	0.45	0.63	
Casing Hole Diameter, Short Axis in		0.47	0.45	0.44	0.42	0.43	0.44	0.47	0.45	0.44	0.42	-
Casing Hole Diameter, Long Axis. in.		0.47	0.46	0.44	0.42	0.44	0.45	0.48	0.45	0.45	0.43	-
Average Casing Hole Diameter, in		0.47	0.46	0.44	0.42	0.44	0.45	0.48	0.45	0.45	0.43	-
Total Depth, in.		47.50	46.20	45.40	44.20	46.90	48.30	49.20	48.10	42.50	47.10	-
Burr Height, in.		0.04	0.04	0.05	0.05	0.07	0.04	0.04	0.06	0.04	0.05	-
Shot No.		No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17	No. 18	No. 19	No. 20	Average
Clearence, in.		0.45	0.14									0.30
Casing Hole Diameter, Short Axis, in		0.42	0.46									0.44
Casing Hole Diameter, Long Axis, in		0.43	0.46									0.45
Average Casing Hole Diameter, in.		0.43	0.46									0.45
Total Depth, in.		46.30	44.10									46.32
Burr Height, in.		0.05	0.04									0.05
Remarks PENETRATION NOP	RMALIZED TO 5000 PSI CONCRET	E WOULD E	BE 51.30" (5% F	PER 1,000 P	SI)							
			SECTION 2	- BEREA S	SANDSTONE	CORE TAR	GET					
	Shot No.				No. 1	No. 2	No. 3	No. 4	No. 5	No. 6		Average
Berea Bulk Porosity,	Faceplate Hole Diameter, Sh	ort Axis, in.						·				
Data of Dama Task	Faceplate Hole Diameter, Lor	g Axis, in										
Date of Bereal Test	Total Dooth in	ieter, in						·				
	Total Depth, In.											
				CERTIFI	CATION							
Type of Certification: [X] Se	elf [] Third Party											
I certify that these tests were made accord	ling to the procedures as outlined in	API RP 43:	Recommended	I Practices fo	or Evaluation of	Nell Perforato	rs, Fifth Editic	in, January 19	91. All of the eq	uipment used in	n these	
tests, such as the guns, jet charges, detor	ator cord,etc., was standard with ou	r company f	or use in the gu	n being teste	ed, and was not	changed in ar	y manner for	the test. Furthe	rmore, the equip	ement was cho	osen at	
random from stock and therefore will be s	ubstantially the same as the equiper	nent which w	ould be furnish	ed to perfora	ite a well for any	operator.						
CERTIFIED BY												
RECERTIFIED	(Company Officer)			(Title)	(Date)		(Company)		(Address)			
X PRELIMINARY												

APPLYING THE CORRELATION

- For a given clearance (Clearance₁) on the datasheet determine the corresponding value for the Normalized EHD (NEHD₁)
- From the data sheet also record the corresponding EHD (EHD₁) for Clearance₁
- Determine the Normalized EHD (NEHD2) for the clearance (Clearance2) to be determined
- Use ... EHD₂ = EHD₁* NEHD₂/NEHD₁
- A similar correlation has been developed for SBH charges

2016 INTERNATIONAL PERFORATING SYMPOSIUM GALVESTON

QUESTIONS? THANK YOU!

IPS 16-37

A NEW METHOD FOR PREDICTING PERFORATION ENTRANCE HOLE DIAMETER