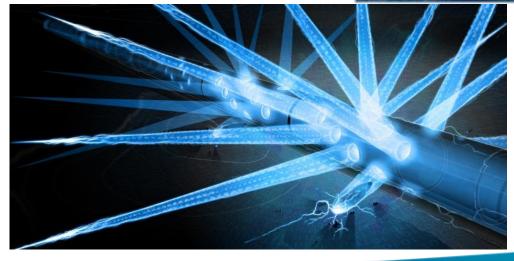


2016 INTERNATIONAL PERFORATING SYMPOSIUM GALVESTON

Next-Generation Dynamic Event Model for Perforated Completions

IPS -16-36


AUTHORS: Derek Bale, Rajani Satti, Minsuk Ji, and Khaled Gasmi, Baker Hughes

SUBTITLE

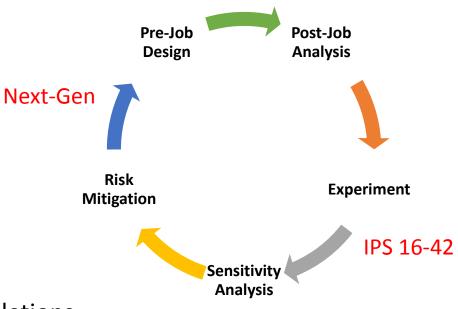
- Introduction what is driving our efforts?
- Challenges, Legacy Software, & New Progress
- Numerical Results
- New User Interface
- Field Study
- Summary & Future Work

Introduction

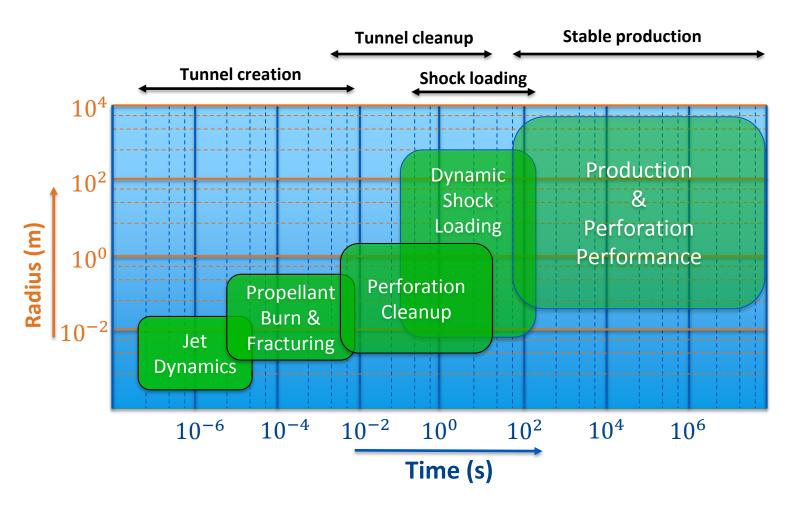
What is driving our efforts?

Modeling and **simulation** of dynamic downhole events during perforation operations are important for:

Pre-job design work flows that

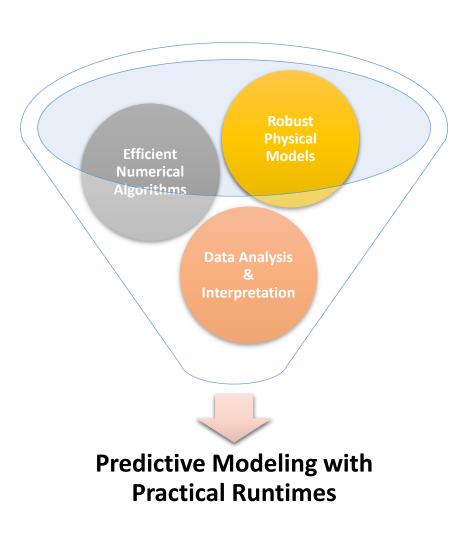

- Quantitatively evaluate options that optimize well completions
- Mitigate risk of damage to completion/production equipment due to shock loading

Post-job analysis that


• effectively integrates knowledge gained from field data back into the design work flow

Sensitivity analysis that

 helps identify and understand dominant variables in flow laboratory experiments used to simulate components of the well-scale system


Challenges in Modeling Perforating Events

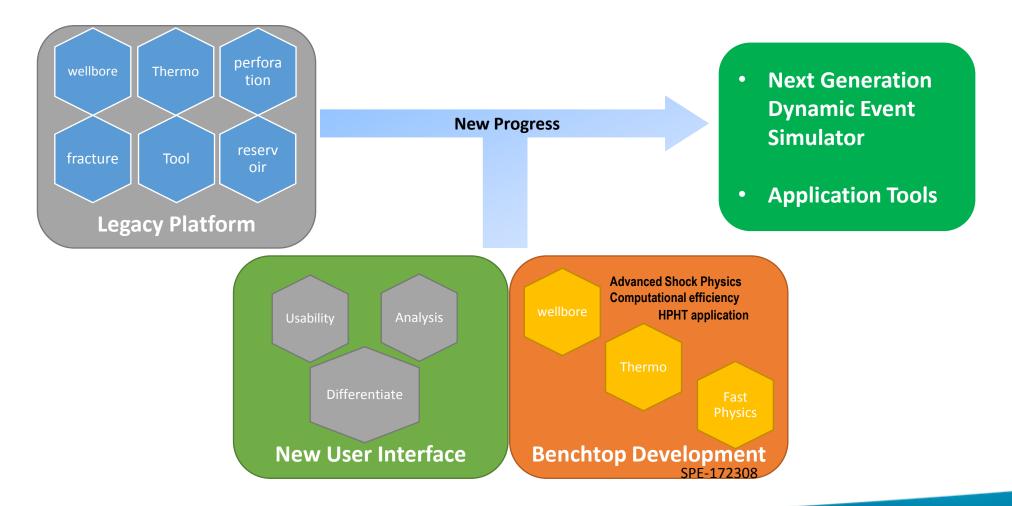
- Physics of perforating depends on a large range of space & time scales:
 - ✓ Good perf tunnels --> connectivity with *high production efficiency*
 - ✓ Good cleanup --> properly flushed and clean perforation tunnels
 - ✓ Low risk of *shock damage* to downhole equipment
 - Minimal tunnel wall damage --> stable production environment

3

Challenges in Modeling Perforating Events

- Full system encompasses a non-linearly coupled wellbore – perf – reservoir with inherently different time- and space-scales
- Flow equations governing evolution are multi-phase & multi-dimensional
- HPHT thermo, shock, and gas burn physics
 - Solutions with strong gradients (e.g., pressure, velocity, density, etc.)
 - Small time scales with long working zones
 - Detonation/Deflagration waves
 - Complex tooling & perforation geometry
 - Must build cautious and constrained conclusions
 - Answer the right questions for risk analysis & mitigation
 - Field-scale interpretation through lab-scale modeling & experimentation

Legacy Modeling Platform

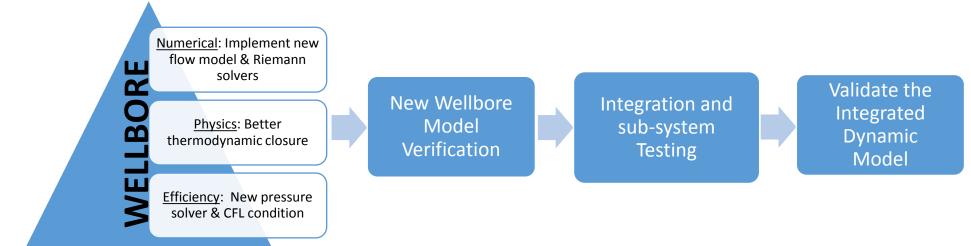

Software platform for

computational modeling of transient, downhole perforating events.

- Scientific platform capable of simulating short-time (0.5-tens of seconds) dynamic events in the coupled *wellbore-perforation-fracture-reservoir* system.
 - Application space of perforation / stimulation jobs
 - Power lies in the fact that each component (i.e., physical sub-model) is selfconsistently coupled → no need for a priori assumptions on their relative importance
 - Embodies our current physical knowledge of dynamical wellbore/reservoir system
 - Flexible input for tooling and conveyance
- Powerful Simulation Platform for Job Design and Analysis
 - ✓ Power lies in entire down-hole system pre-job modelling
 - ✓ Risk assessment and strategic mitigation,
 - ✓ completion design and optimization,
 - ✓ Performance prediction and Post-job analysis.

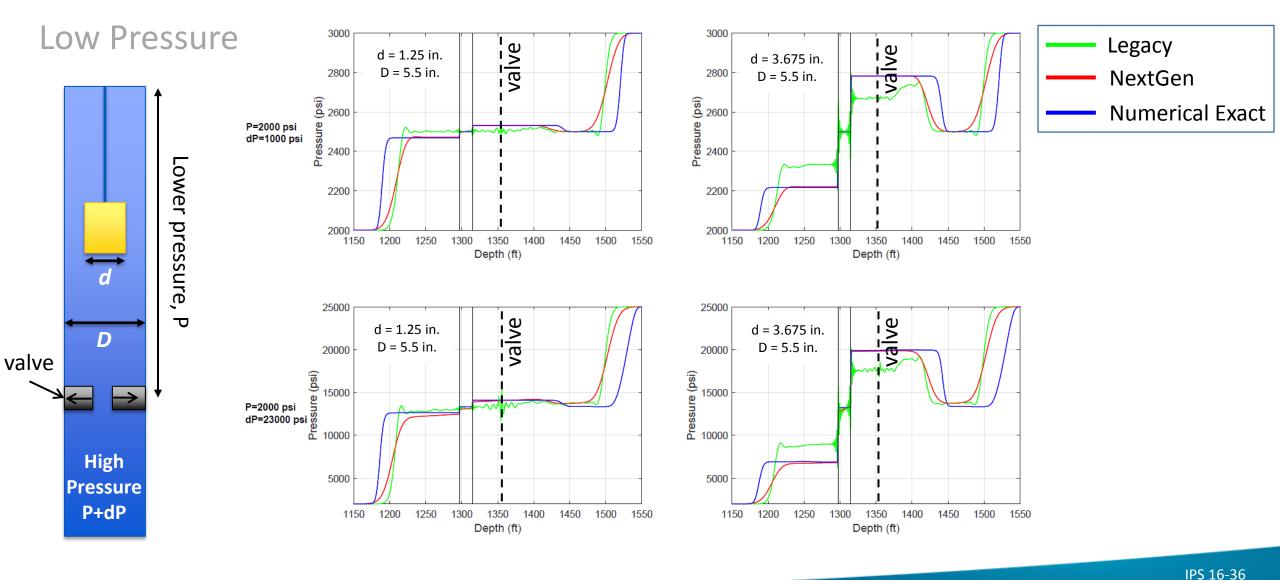
Recent Progress

Integration with legacy platform

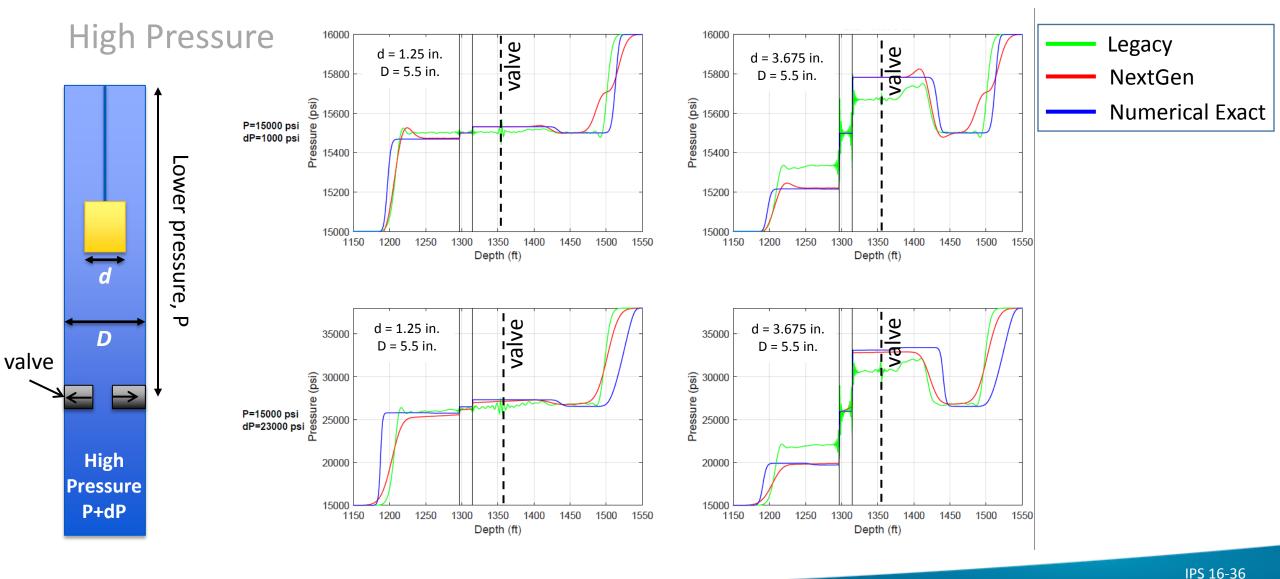

Recent Progress

Main focus of this work

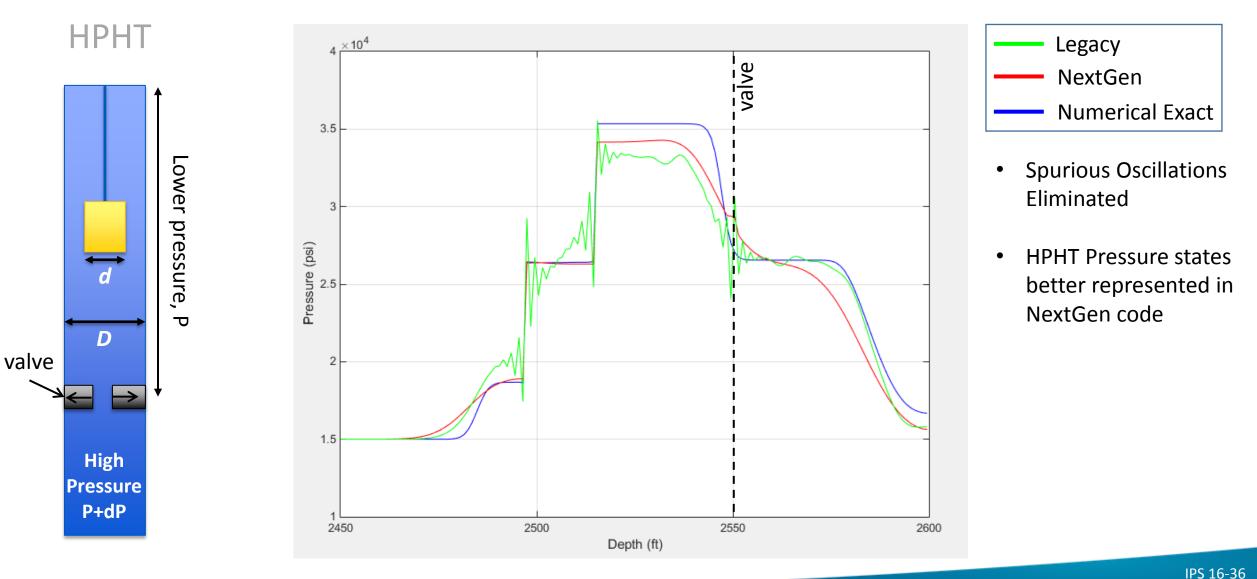
- Integration of new physics & numerical algorithms into legacy software platform
 - > New wellbore flow model developed in a "benchtop" computing environment
 - Implementation of Wave Propagation Hydrodynamic solvers*
 - Improved thermodynamic closure Riemann-based scheme SPE-172308
- Release of a next-generation graphical user interface with a modern look and feel.
 - Updated input forms and software controls
 - Simplified user input


Integration & Testing

New algorithms and GUI



- GUI
 - Compatibility testing
 - Unit testing
- Calculation Engine
 - Standard Riemann Problems
 - Simplified Downhole scenarios
 - Test suite of complicated completions


Numerical Results

Numerical Results

Numerical Results

Graphical User Interface

A new look and feel

Legacy Interface

md

a/cm^3

10^6 psi Y

1/10^6 psi

ср

psi

Tools

Imp Value 1

0.0

0.05

5.000

12

0.500

(2.56

1,991

0.25)

8000)

(250.0)

(0.020)

(0.010)

10.0)

Medium Oi

7 344

3500

6.88)

(4.76)

(10.00)

(5.44)

1125

12.5)

Numeri

Value 2

Well Fluids

Use?

Туре

Тор

Position

Use Defaults?

-Density at ST

-Use Sound S

-Sound Speed

-Compressibi

-Compressibi

-Viscosity at S

-Viscosity at D

-Solids Gr Size

-Volume Fract

Total Mass in V

Pressure Points

Use?

Depth 1

Type 1

Position 1

Recorder Port?

Depth from Sar

Lico Difforence

Pres or Diff

Add Solids?

-Density

2350

2400

2450

2550

260

Displayed Weigh

Help? (this page)

Formations

Rock Type

Permeability

Equivalent Skin

-Density

Use Rock Defaults'

-Young's Modulus

-Tensile Strength

-Crushed Grain Size

Formation Fluid Type

Use Fluid Defaults'

-Density at STP

-Sound Speed

-Compressibility

-Viscosity at STP

Formation Pressure

-Use Speed?

-Grain Size

-Poissons Ratio

Formation Skin Thickness in

Formation Skin Permeabi md

-Compressive Strength psi

-Crushed Gr Cohesion psi

-Compressibility at Res (1/10^6 psi

-Viscosity at Res Conds cp

Porosity

Imp Value

2600.0

None

No

(2600.0)

Value 2

Yes

Y 8.000

0.0

Well/Driller

Well General

Meas Depth or PBT

-TVD at Meas Depth

Interior Open to Atmos

-Well Interior Orifice

-Annulus 1 Orifice

-Annulus 2 Orifice

-Annulus 2 Pressure

-Pump Flow Capacity

-Maximum Pump Pressure

Use Default Roughnesse

....

Use Surface Pump?

-Pump Type

-Pump To

As Driller

Diameter

-Annulus 1 Pressure

-Well Interior Pressure

Annulus 1 Open to Atmos

Annulus 2 Open to Atmos

Deviation Type

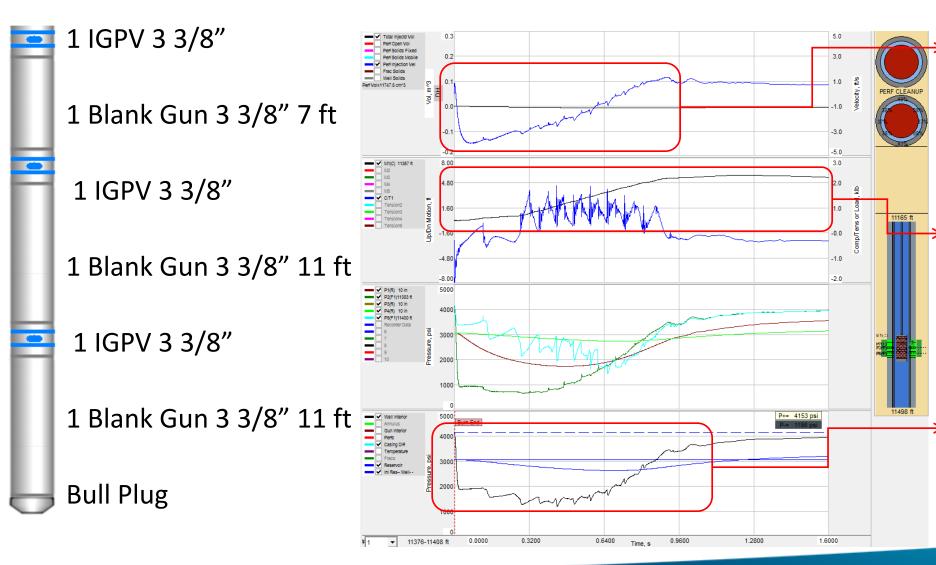
	Ignition Point 1 Ignition Delay 0 Use Carrier? 1 Carrier Size 3 Carrier OD 3 Use Default ID? 1 Carrier ID 2	0.0000 Air 3-3/8 (86) x 3.375 Yes	s •	SHAPED CHARGE Top Shot Carrier Bottom Shot Carrier Shot Density Shot Phasing	2512.0 6.0	ft #/ft degrees
	Use Carrier? Tool Fluid Carrier Size Carrier OD Use Default ID?	Air • 3-3/8 (86) • 3.375		Top Shot Carrier Bottom Shot Carrier Shot Density	2512.0	[ft [#/ft
	Tool Fluid Carrier Size Carrier OD Use Default ID?	Air	in v	Top Shot Carrier Bottom Shot Carrier Shot Density	2512.0	[ft [#/ft
	Tool Fluid Carrier Size Carrier OD Use Default ID?	Air	in •	Bottom Shot Carrier Shot Density	2512.0	[ft [#/ft
	Carrier Size	3-3/8 (86) 3.375 Yes	in •	Shot Density	6.0	#/ft
	Carrier OD 3	3.375 Yes	in •			
	Use Default ID?	Yes 💌	in 🔻			
					•	
				Planes		uegrees
			in 💌	T full to 3		
				Charge Type	RDX 💌	
	Carrier Grade	C-75 💌		Zinc Case?		
	Burst Pressure		psi v	Weight		g
	Collapse Pressure		psi v	weight	21.0	(a
	* B/C Multiplier		(psi *	Det Cord	80.0	gr/ft
	* B/C Multiplier	1.00		Total Explosive Mass	1.59	kg
	* Gun Vol Factor 0					
	Carrier Top 2	2500.0	ft 🔹			
	Carrier Bottom 2	2512.0	ft 🔹	Entry Hole Diameter	0.35	in
, Trans Scale, Transf 15	er Hole Diameter		in 🔻	Entry Hole Diameter	0.35	In

Next-Generation Interface

- Leveraged latest Delphi tool sets and capabilities.
- Design UI based on legacy workflow for consistency.
- Implemented standard oilfield terminology.
- Made improvements to plotting & data analysis modules.
- Added an easy-to-use report generator.

Next-Generation Dynamic Event Model for Perforated Completions

Field Study

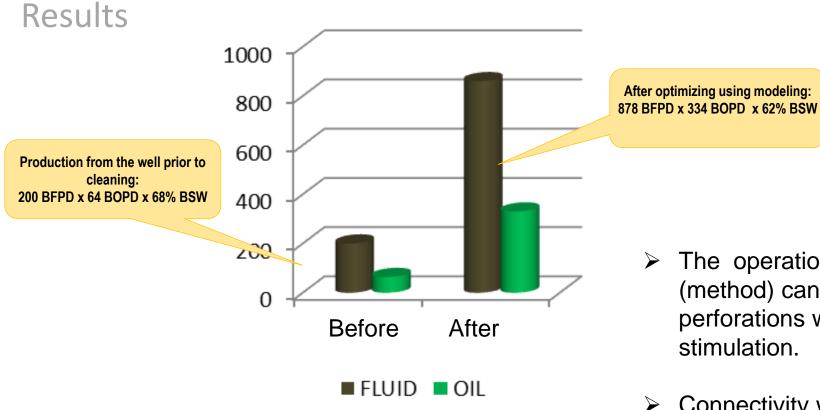

Downhole conditions

- The candidate well was a well where perforations were already present.
- In this instance, there was no perforation to be modelled
- Instead, just the underbalance was generated by the opening of the pressure valves at the level of the perforations.
- The perforated interval that needed curing was 32 ft at a depth of 11,300 ft.

Formation & Fluid Properties

Reservoir Pressure, psi	3068
Permeability, mD	314
Porosity, %	14
Temperature, °F	198
Oil Density, g/cc	0.95
Oil Viscosity, cP	13.21

Field Study Pre-job modeling



Flow rate of all the material that comes from the formation to the wellbore. The maximum speed reached during the surge is 4 ft / s in approximately 0.9 s.

Movement the guns due to the fluids rushing in (dynamic event). A movement of 5.7 ft down is observed. The cable tension and compression are within the ranges for proper operation.

 ΔP pressure is observed. In this case, the dynamic underbalance generated is 1870 psi. The use of valves and vacuum chambers help keep ΔP for a prolonged time 0.9s.

Field Study

increase:

- 330 % more bfpd
- 415% more bopd

- The operation demonstrates that the modeling (method) can be employed to cure pre-existing perforations with no re-perforation or chemical stimulation.
- Connectivity was successfully restored with limited cost and time.

Summary

- A new calculation engine has been integrated into our existing simulation platform.
 - It is robust to spurious oscillations in fluid properties that can occur near shockwaves emanating from a perforating event.
 - The post-shock fluid state is more accurately resolved.
- A next-generation graphical user interface has been implemented.
 - Modern Delphi controls have updated the software's look & feel.
 - Included automated report generation.
 - Simplified user input.
- The example field study demonstrates that dynamic underbalance modeling is critical to proper perforation clean-up and production restoration.
- Future work
 - Parallelization
 - Integration into Section IV test work flows see IPS-16-42

2016 INTERNATIONAL PERFORATING SYMPOSIUM GALVESTON

THANK YOU!

Questions?

IPS 16-36

Next-Generation Dynamic Event Model for Perforated Completions